You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book will provide readers with deep insight into the intriguing science of thermoelectric thin films. It serves as a fundamental information source on the techniques and methodologies involved in thermoelectric thin film growth, characterization and device processing. This book involves widespread contributions on several categories of thermoelectric thin films: oxides, chalcogenides, iodates, nitrides and polymers. This will serve as an invaluable resource for experts to consolidate their knowledge and will provide insight and inspiration to beginners wishing to learn about thermoelectric thin films. Provides a single-source reference on a wide spectrum of topics related to thermoelectric thin films, from organic chemistry to devices, from physical chemistry to applied physics, from synthesis to device implementation; Covers several categories of thermoelectric thin films based on different material approaches such as oxides, chalcogenides, iodates, nitrides and polymers; Discusses synthesis, characterization, and device processing of thermoelectric thin films, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.
This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book.
Sono illustrati i fondamentali della turbolenza dei fluidi incomprimibili a partire da considerazioni sulla stabilità idrodinamica. Seguono l'esposizione delle caratteristiche dei flussi turbolenti, dell'approccio mediato alla Reynolds e del bilancio dell'energia cinetica turbolenta. Vengono poi introdotti e descritti i più importanti modelli di turbolenza e infine sono esposti cenni sull'applicazione della teoria del caos deterministico allo studio della turbolenza. DOI: 10.13134/979-12-5977-161-2
This book provides readers with a comprehensive overview of the science of superconducting materials. It serves as a fundamental information source on the actual techniques and methodologies involved in superconducting materials growth, characterization and processing. This book includes coverage of several categories of medium and high-temperature superconducting materials: cuprate oxides, borides, and iron-based chalcogenides and pnictides. Provides a single-source reference on superconducting materials growth, characterization and processing; Bridges the gap between materials science and applications of superconductors; Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides; Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.
This book will give a detailed description of different carbon based materials synthesis methods, characterization, and applications. It serves as a fundamental information source on the actual techniques and methodologies involved in carbon materials synthesis, such as CVD, plasma in liquids, fusion reactors, or frequency-doubled yttrium–aluminum– garnet (YAG) lasers. This book includes coverage of several categories of carbon materials, such as graphene, carbon fiber composites, functionalized carbons, and polyimides used for various applications, from microelectronic industry to slotted waveguide antennas.
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced.
This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have op...
This book provides a general overview and current state of the art of different types of metal oxide nanomaterials, either in nanoparticles or thin film structure. It covers from the development and optimization of different nanofabrication/synthesis techniques for nanostructures which are currently the attention of the research community, the study of the structure and interactions by different characterization techniques of heterostructured materials and the final impact in different applications such as nanotherapy, data storage, super magnets, high-frequency devices. The book’s 13 chapters provide deep insight into the intriguing science of oxide materials and include contributions on novel technologies to fabricate nanomaterials with a broad range of functional properties (semiconducting, magnetic, ferroelectric, thermoelectric, optical, flexible and mechanical). This book is intended to the experts for consolidation of their knowledge but also for students who aim to learn and get basics of nanostructured metal oxides in diverse forms.
Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser-matter interactions. Many experiments were undertaken to clarify the major ablation mechanisms. At the same time, numerous theoretical studies, both analytical and numerical, were proposed to describe these interactions. These studies paved the ways toward the development of numerous laser applications, ranging from laser micro- and nanomachining to material analysis, nanoparticle and nanostructure formation, thin-film deposition, etc. Recently, more and more promising novel fields of laser applications have appeared, including biomedicine, catalysis, photovoltaic cells, etc. This book intends to provide the reader with a comprehensive overview of the current state of the art in laser ablation, from its fundamental mechanisms to novel applications.
Since the Nobel Prize for the discovery of graphene was presented in 2010, graphene has been frequently leveraged for different applications. Owing to the strategic importance of elastomer-based products in different segments, graphene and its derivatives are often added to different elastomers to improve their properties. Graphene-Rubber Nanocomposites: Fundamentals to Applications provides a comprehensive and innovative account of graphene-rubber composites. Features: Provides up-to-date information and research on graphene-rubber nanocomposites Presents a detailed account of the different niche applications ranging from sensors, flexible electronics to thermal, and EMI shielding materials...