You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open pro...
• Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. • Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. • Fully up-to-date, containing the latest developments and discoveries in the field.
This book is invaluable for teachers and students in high school and junior college who struggle to understand the principles of modern physics and incorporate scientific methods in their lessons. It provides interactive and multidisciplinary approaches that will help prepare present and future generations to face the technological and social challenges they will face. Rather than using a unidirectional didactic approach, the authors - scientists, philosophers, communication experts, science historians and science education innovators - divide the book into two parts; the first part, “Communicating Contemporary Physics”, examines how new physics developments affect modern culture, while the second part, “Digital Challenges for Physics Learning”, covers physics education research using ICT, plus the experiences of classroom teachers and a range of ideas and projects to innovate physics and STEM teaching.
The Marcel Grossmann Meetings seek to further the development of the foundations and applications of Einstein's general relativity by promoting theoretical understanding in the relevant fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. The meetings discuss recent developments in classical and quantum aspects of gravity, and in cosmology and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, having the main objective of gathering scientists from diverse backgrounds for deepening our understanding of spacetime structure and reviewing the current state of the a...
Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interaction...
A practical guide translating clinical trials findings, across major psychiatric disorders, to devise tailored, evidence-based treatments.
This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures...
This book highlights the fundamental physics of orbit theory, dynamical models, methods of orbit determination, design, measurement, adjustment, and complete calculations for the position, tracking, and prediction of satellites and deep spacecraft. It emphasizes specific methods, related mathematical calculations, and worked examples and exercises. Therefore, technicians and engineers in the aerospace industry can directly apply them to their practical work. Dedicated to undergraduate students and graduate students, researchers, and professionals in astronomy, physics, space science, and related aerospace industries, the book is an integrated work based on the accumulated knowledge in satellite orbit dynamics and the author’s more than five decades of personal research and teaching experience in astronomy and aerospace dynamics.