Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Real Harmonic Analysis
  • Language: en

Real Harmonic Analysis

  • Type: Book
  • -
  • Published: 2012-02
  • -
  • Publisher: Anu Eview

Real Harmonic Analysis originates from the seminal works of Zygmund and Calderón, pursued by Stein, Weiss, Fefferman, Coifman, Meyer and others. Moving from the classical periodic setting to the real line, then to higher dimensional Euclidean spaces and finally to, nowadays, sets with minimal structures, the theory has a high level of applicabilit

Operator Theory in Harmonic and Non-commutative Analysis
  • Language: en
  • Pages: 260

Operator Theory in Harmonic and Non-commutative Analysis

  • Type: Book
  • -
  • Published: 2014-06-21
  • -
  • Publisher: Springer

This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA 2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results.

Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 190

Harmonic Analysis and Partial Differential Equations

This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.

Wavelets
  • Language: en
  • Pages: 586

Wavelets

  • Type: Book
  • -
  • Published: 2021-07-28
  • -
  • Publisher: CRC Press

Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.

Parabolic Problems
  • Language: en
  • Pages: 712

Parabolic Problems

The volume originates from the 'Conference on Nonlinear Parabolic Problems' held in celebration of Herbert Amann's 70th birthday at the Banach Center in Bedlewo, Poland. It features a collection of peer-reviewed research papers by recognized experts highlighting recent advances in fields of Herbert Amann's interest such as nonlinear evolution equations, fluid dynamics, quasi-linear parabolic equations and systems, functional analysis, and more.

Noncommutative Maslov Index and Eta-Forms
  • Language: en
  • Pages: 130

Noncommutative Maslov Index and Eta-Forms

The author defines and proves a noncommutative generalization of a formula relating the Maslov index of a triple of Lagrangian subspaces of a symplectic vector space to eta-invariants associated to a pair of Lagrangian subspaces. The noncommutative Maslov index, defined for modules over a $C *$-algebra $\mathcal{A}$, is an element in $K_0(\mathcal{A})$. The generalized formula calculates its Chern character in the de Rham homology of certain dense subalgebras of $\mathcal{A}$. The proof is a noncommutative Atiyah-Patodi-Singer index theorem for a particular Dirac operator twisted by an $\mathcal{A}$-vector bundle. The author develops an analytic framework for this type of index problem.

Noncompact Problems at the Intersection of Geometry, Analysis, and Topology
  • Language: en
  • Pages: 266

Noncompact Problems at the Intersection of Geometry, Analysis, and Topology

This proceedings volume contains articles from the conference held at Rutgers University in honor of Haim Brezis and Felix Browder, two mathematicians who have had a profound impact on partial differential equations, functional analysis, and geometry. Mathematicians attending the conference had interests in noncompact variational problems, pseudo-holomorphic curves, singular and smooth solutions to problems admitting a conformal (or some group) invariance, Sobolev spaces on manifolds, and configuration spaces. One day of the proceedings was devoted to Einstein equations and related topics. Contributors to the volume include, among others, Sun-Yung A. Chang, Luis A. Caffarelli, Carlos E. Kenig, and Gang Tian. The material is suitable for graduate students and researchers interested in problems in analysis and differential equations on noncompact manifolds.

Mathematical Studies in Nonlinear Wave Propagation
  • Language: en
  • Pages: 226

Mathematical Studies in Nonlinear Wave Propagation

Lively discussions and stimulating research were part of a five-day conference on Mathematical Methods in Nonlinear Wave Propagation sponsored by the NSF and CBMS. This volume is a collection of lectures and papers stemming from that event. Leading experts present dynamical systems and chaos, scattering and spectral theory, nonlinear wave equations, optimal control, optical waveguide design, and numerical simulation. The book is suitable for a diverse audience of mathematical specialists interested in fiber optic communications and other nonlinear phenomena. It is also suitable for engineers and other scientists interested in the mathematics of nonlinear wave propagation.

The Hilbert Function of a Level Algebra
  • Language: en
  • Pages: 154

The Hilbert Function of a Level Algebra

Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.