Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Modern Multidimensional Scaling
  • Language: en
  • Pages: 469

Modern Multidimensional Scaling

Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices for a set of countries. MDS attempts to model such data as distances among points in a geometric space. The main reason for doing this is that one wants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of g...

Applied Multidimensional Scaling and Unfolding
  • Language: en
  • Pages: 128

Applied Multidimensional Scaling and Unfolding

  • Type: Book
  • -
  • Published: 2018-05-16
  • -
  • Publisher: Springer

This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main intere...

Applied Multidimensional Scaling
  • Language: en
  • Pages: 119

Applied Multidimensional Scaling

This book introduces MDS as a psychological model and as a data analysis technique for the applied researcher. It also discusses, in detail, how to use two MDS programs, Proxscal (a module of SPSS) and Smacof (an R-package). The book is unique in its orientation on the applied researcher, whose primary interest is in using MDS as a tool to build substantive theories. This is done by emphasizing practical issues (such as evaluating model fit), by presenting ways to enforce theoretical expectations on the MDS solution, and by discussing typical mistakes that MDS users tend to make. The primary audience of this book are psychologists, social scientists, and market researchers. No particular background knowledge is required, beyond a basic knowledge of statistics.

Data Analysis, Classification, and Related Methods
  • Language: en
  • Pages: 428

Data Analysis, Classification, and Related Methods

This volume contains a selection of papers presented at the Seven~h Confer ence of the International Federation of Classification Societies (IFCS-2000), which was held in Namur, Belgium, July 11-14,2000. From the originally sub mitted papers, a careful review process involving two reviewers per paper, led to the selection of 65 papers that were considered suitable for publication in this book. The present book contains original research contributions, innovative ap plications and overview papers in various fields within data analysis, classifi cation, and related methods. Given the fast publication process, the research results are still up-to-date and coincide with their actual presentation...

Elements of Dimensionality Reduction and Manifold Learning
  • Language: en
  • Pages: 617

Elements of Dimensionality Reduction and Manifold Learning

Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, an...

Data Analysis
  • Language: en
  • Pages: 517

Data Analysis

"Data Analysis" in the broadest sense is the general term for a field of activities of ever-increasing importance in a time called the information age. It covers new areas with such trendy labels as, e.g., data mining or web mining as well as traditional directions emphazising, e.g., classification or knowledge organization. Leading researchers in data analysis have contributed to this volume and delivered papers on aspects ranging from scientific modeling to practical application. They have devoted their latest contributions to a book edited to honor a colleague and friend, Hans-Hermann Bock, who has been active in this field for nearly thirty years.

Facets of Behaviormetrics
  • Language: en
  • Pages: 335

Facets of Behaviormetrics

This edited book is the first one written in English that deals comprehensively with behavior metrics. The term “behaviormetrics” comprehends the research including all sorts of quantitative approaches to disclose human behavior. Researchers in behavior metrics have developed, extended, and improved methods such as multivariate statistical analysis, survey methods, cluster analysis, machine learning, multidimensional scaling, corresponding analysis or quantification theory, network analysis, clustering, factor analysis, test theory, and related factors. In the spirit of behavior metrics, researchers applied these methods to data obtained by surveys, experiments, or websites from a divers...

Multiple Correspondence Analysis and Related Methods
  • Language: en
  • Pages: 607

Multiple Correspondence Analysis and Related Methods

  • Type: Book
  • -
  • Published: 2006-06-23
  • -
  • Publisher: CRC Press

As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the su

The Oxford Handbook of Women and the Economy
  • Language: en
  • Pages: 889

The Oxford Handbook of Women and the Economy

This collection of essays reviews the key trends, surveys the relevant economic theory and summarizes and critiques the empirical research literature. By providing a view of what we know, what we do not know, and what the critical unanswered questions are, this Handbook provides an examination of the many changes that have occurred in women's economic lives.

Computational Statistics
  • Language: en
  • Pages: 268

Computational Statistics

  • Type: Book
  • -
  • Published: 2009-01-26
  • -
  • Publisher: CRC Press

Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of statistics and computing. This introduction covers one-sample analysis and distribution diagnostics, regression, two-sample problems and comparison of distributions, and multivariate analysis. It uses a range of examples to demonstrate how R can be employed to tackle statistical problems. In addition, the handy appendix includes a collection of R language elements and functions, serving as a quick reference and starting point to access the rich information that comes bundled with R. Accessible to a broad audience, this book explores key topics in data analysis, regression, statistical distributions, and multivariate statistics. Full of examples and with a color insert, it helps readers become familiar with R.