You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.
This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are ...
Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in analysis, algebraic geometry, number theory and topology is emphasized through many theorems. Almost every chapter is organized around excerpts from a research paper in which a new perspective was brought on the genus or on one of the objects to which this notion applies. The author was motivated by the belief that a subject may best be understood and communicated by studying its broad lines of development, feeling the way one arrives at the definitions of its fundamental notions, and appreciating the amount of effort spent in order to explore its phenomena.
This book is the second of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). It contains the most recent applications of valuation theory to a broad range of mathematical ideas. Valuation theory arose in the early part of the twentieth century in connection with number theory and continues to have many important applications to algebra, geometry, and analysis. The research and survey papers in this volume cover a variety of topics, including Galois theory, the Grunwald-Wang Theorem, algebraic geometry, resolution of singularities, curves over Prufer domains, model theory of valued fields and the Frobenius, Hardy fields, Hensel's Lemma, fixed point theorems, and computations in valued fields. It is suitable for graduate students and research mathematicians interested in algebra, algebraic geometry, number theory, and mathematical logic.
This book is the second of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). It contains the most recent applications of valuation theory to a broad range of mathematical ideas. Valuation theory arose in the early part of the twentieth century in connection with number theory and continues to have many important applications to algebra, geometry, and analysis. The research and survey papers in this volume cover a variety of topics, including Galois theory, the Grunwald-Wang Theorem, algebraic geometry, resolution of singularities, curves over Prufer domains, model theory of valued fields and the Frobenius, Hardy fields, Hensel's Lemma, fixed point theorems, and computations in valued fields. It is suitable for graduate students and research mathematicians interested in algebra, algebraic geometry, number theory, and mathematical logic.
This volume contains invited expository and research papers from the conference Topology of Algebraic Varieties, in honour of Anatoly Libgober's 60th birthday, held June 22-26, 2009, in Jaca, Spain.
The Ahlfors–Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmüller theory, hyperbolic geometry, and partial differential equations. Today we see the influence of Ahlfors and Bers on algebraic geometry, mathematical physics, dynamics, probability, geometric group theory, number theory and topology. Recent years have seen a flowering of this legacy with an increased interest in their work. This current volume contains articles on a wide variety of subjects that are central to this legacy. These include papers in Kleinian groups, classical Riemann surface theory, Teichmüller theory, mapping class groups, geometric group theory, and statistical mechanics.
Single-molecule studies constitute a distinguishable category of focused - search in nanoscience and nanotechnology. This book is dedicated to the - troduction of recent advances on single-molecule studies. It will be illustrated that studying single molecules is both intellectually and technologically ch- lenging, and also o?ers vast potential in opening up new scienti?c frontiers. We wish to present the readers with several di?erent techniques for studying single molecules, such as electron-tunneling methods, interaction-force m- surement techniques, optical spectroscopy, plus a number of directions where further progress could be pursued. We hope the work may assist the readers, especiall...
This volume contains the proceedings of the CIEM workshop on Tropical Geometry, held December 12-16, 2011, at the International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain. Tropical geometry is a new and rapidly developing field of mat
This volume brings together scholars across various domains of the history and philosophy of mathematics, investigating duality as a multi-faceted phenomenon. Encompassing both systematic analysis and historical examination, the book endeavors to elucidate the status, roles, and dynamics of duality within the realms of 19th and 20th-century mathematics. Eschewing a priori notions, the contributors embrace the diverse interpretations and manifestations of duality, thus presenting a nuanced and comprehensive perspective on this intricate subject. Spanning a broad spectrum of mathematical topics and historical periods, the book uses detailed case studies to investigate the different forms in wh...