You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces the active area of the model theory of fields, concentrating on connections to stability theory.
This book focuses on finiteness conjectures and results in ordinary differential equations (ODEs) and Diophantine geometry. During the past twenty-five years, much progress has been achieved on finiteness conjectures, which are the offspring of the second part of Hilbert's 16th problem. Even in its simplest case, this is one of the very few problems on Hilbert's list which remains unsolved. These results are about existence and estimation of finite bounds for the number of limit cycles occurring in certain families of ODEs. The book describes this progress, the methods used (bifurcation theory, asymptotic expansions, methods of differential algebra, or geometry) and the specific results obta...
This thin volume contains three sets of lecture notes, representing recent developments in differential scales, o-minimality, and tame convergence theory. The first lecture outlines the basics of differential fields, and then addresses topics like differential varieties and tangent bundles, Kolchin's logarithmic derivative, and Manin's construction. The second describes added exponentation, T-convexity and tame extensions, piecewise linearity, the Wilkie inequality, and the valuation property. And the third considers the structure and varieties of finite algebra. No index. c. Book News Inc.
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.
This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential funct...
None
Model theoretic algebra has witnessed remarkable progress in the last few years. It has found profound applications in other areas of mathematics, notably in algebraic geometry and in singularity theory. Since Wilkie's results on the o-minimality of the expansion of the reals by the exponential function, and most recently even by all Pfaffian functions, the study of o-minimal expansions of the reals has become a fascinating topic. The quest for analogies between the semi-algebraic case and the o-minimal case has set a direction to this research. Through the Artin-Schreier Theory of real closed fields, the structure of the non-archimedean models in the semi-algebraic case is well understood. ...
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the thirteenth publication in the Lecture Notes in Logic series, collects the proceedings of the European Summer Meeting of the Association for Symbolic Logic held at the University of Economics in Prague, August 9–15, 1988. It includes surveys and research from preeminent logicians. The papers in this volume range over all areas of mathematical logic, including proof theory, set theory, model theory, computability theory and philosophy. This book will be of interest to all students and researchers in mathematical logic.