You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a state-of-the-art scientific overview of the influence of terrestrial vegetation and soils within the Earth system. It deals especially with interactions between the terrestrial biosphere and the atmosphere via the hydrological cycle and their interlinkage with anthropogenic activities. Measurements gathered in integrated field experiments in the Sahel, the Amazon, North America and South-east Asia confirm the importance of these interactions, but a substantial data consolidation effort still needs to be undertaken. Observations are complemented by modelling studies, including regional models that simulate flows and transport in river catchments, coupled land-cover and re...
This book focuses on the development of physical parameterization over the last 2 to 3 decades and provides a roadmap for its future development. It covers important physical processes: convection, clouds, radiation, land-surface, and the orographic effect. The improvement of numerical models for predicting weather and climate at a variety of places and times has progressed globally. However, there are still several challenging areas, which need to be addressed with a better understanding of physical processes based on observations, and to subsequently be taken into account by means of improved parameterization. And this is all the more important since models are increasingly being used at higher horizontal and vertical resolutions. Encouraging debate on the cloud-resolving approach or the hybrid approach with parameterized convection and grid-scale cloud microphysics and its impact on models’ intrinsic predictability, the book offers a motivating reference guide for all researchers whose work involves physical parameterization problems and numerical models.
Water managers rely on predicting changes in the hydrologic cycle on seasonal-to-interannual time frames to prepare for water resource needs. Seasonal to interannual predictability of the hydrologic cycle is related to local and remote influences involving land processes and ocean processes, such as the El Niño Southern Oscillation. Although advances in understanding land-surface processes show promise in improving climate prediction, incorporating this information into water management decision processes remains a challenge since current models provide only limited information for predictions on seasonal and longer time scales. To address these needs, the Global Energy and Water Cycle Ex...