You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Multiple regression is at the heart of social science data analysis, because it deals with explanations and correlations. This book is a complete introduction to this statistical method. This textbook is designed for the first social statistics course a student takes and, unlike other titles aimed at a higher level, has been specifically written with the undergraduate student in mind.
This book demonstrates how to estimate and interpret fixed-effects models in a variety of different modeling contexts: linear models, logistic models, Poisson models, Cox regression models, and structural equation models. Both advantages and disadvantages of fixed-effects models will be considered, along with detailed comparisons with random-effects models. Written at a level appropriate for anyone who has taken a year of statistics, the book is appropriate as a supplement for graduate courses in regression or linear regression as well as an aid to researchers who have repeated measures or cross-sectional data.
Drawing on recent "event history" analytical methods from biostatistics, engineering, and sociology, this clear and comprehensive monograph explains how longitudinal data can be used to study the causes of deaths, crimes, wars, and many other human events. Allison shows why ordinary multiple regression is not suited to analyze event history data, and demonstrates how innovative regression - like methods can overcome this problem. He then discusses the particular new methods that social scientists should find useful.
Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Includes several real-world examples in full detail.
Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has relied on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data.
Written in an informal and non-technical style, this book first explains the theory behind logistic regression and then shows how to implement it using the SAS System. Allison includes several detailed, real-world examples of the social sciences to provide readers with a better understanding of the material. He also explores the differences and similarities among the many generalizations of the logistic regression model.
Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival anal...
'In this brilliant new edition Andy Field has introduced important new introductory material on statistics that the student will need and was missing at least in the first edition. This book is the best blend that I know of a textbook in statistics and a manual on SPSS. It is a balanced composite of both topics, using SPSS to illustrate important statistical material and, through graphics, to make visible important approaches to data analysis. There are many places in the book where I had to laugh, and that's saying a lot for a book on statistics. His excellent style engages the reader and makes reading about statistics fun' - David C Howell, Professor Emeritus, University of Vermont USA Thi...
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.
Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.