You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new volume of Methods in Cell Biology looks at methods for analyzing correlative light and electron microscopy (CLEM). With CLEM, people try to combine the advantages of both worlds, i.e. the dynamics information obtained by light microscopy and the ultrastructure as provided by electron microscopy. This volume contains the latest techniques on correlative microscopy showing that combining two imaging modalities provides more than each technique alone. Most importantly it includes the essential protocols, including tips, tricks and images for you to repeat these exciting techniques in your own lab. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. - Covers sections on model systems and functional studies, imaging-based approaches and emerging studies - Chapters are written by experts in the field - Cutting-edge material - Second of two volumes dedicated to Correlative Light and Electron microscopy (CLEM)
Correlative Light and Electron Microscopy IV, Volume 162, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Besides the detailed description of protocols for CLEM technologies including time-resolution, Super resolution LM and Volume EM, new chapters cover Workflow (dis)-advantages/spiderweb, Serial section LM + EM, Platinum clusters as CLEM probes, Correlative Light Electron Microscopy with a transition metal complex as a single probe, SEM-TEM-SIMS, HPF-CLEM, A new workflow for high-throughput screening of mitotic mammalian cells for electron microscopy using classic histological dyes, and more. - Contains contributions from experts in the field - Covers topics using nano-SIMS and EDX for CLEM - Presents recent advances and currently applied correlative approaches - Gives detailed protocols, allowing for the application of workflows in one's own laboratory setting - Covers CLEM approaches in the context of specific applications - Aims to stimulate the use of new combinations of imaging modalities
Essential Guide to Reading Biomedical Papers: Recognising and Interpreting Best Practice is an indispensable companion to the biomedical literature. This concise, easy-to-follow text gives an insight into core techniques and practices in biomedical research and how, when and why a technique should be used and presented in the literature. Readers are alerted to common failures and misinterpretations that may evade peer review and are equipped with the judgment necessary to be properly critical of the findings claimed by research articles. This unique book will be an invaluable resource for students, technicians and researchers in all areas of biomedicine. Allows the reader to develop the necessary skills to properly evaluate research articles Coverage of over 30 commonly-used techniques in the biomedical sciences Global approach and application, with contributions from leading experts in diverse fields
Introduces readers to the enlightening world of the modern light microscope There have been rapid advances in science and technology over the last decade, and the light microscope, together with the information that it gives about the image, has changed too. Yet the fundamental principles of setting up and using a microscope rests upon unchanging physical principles that have been understood for years. This informative, practical, full-colour guide fills the gap between specialised edited texts on detailed research topics, and introductory books, which concentrate on an optical approach to the light microscope. It also provides comprehensive coverage of confocal microscopy, which has revolut...
Volume Electron Microscopy (vEM), Volume 177 is a collective term for a set of three-dimensional high-resolution ultrastructural imaging techniques that have delivered new insights into biological systems in recent years, garnering substantial interest in the life and clinical sciences. In this book, users will find a variety of vEM workflows and technologies, highlighting application areas with biologically relevant examples. Topics covered include Automated large volume sample preparation for vEM, Resin comparison for Serial Block Face Scanning Volume Electron Microscopy, Immunolabelling for SBF-SEM, Electron Microscopy in Plants, Serial section electron tomography, Automated Tape Collecti...
Correlative Light and Electron Microscopy III, Volume 140, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics discussed in this new release include Millisecond time-resolved CLEM, Super resolution LM und SEM of high-pressure frozen C. elegans, Preservation fluorescence, super res CLEM, APEX in Tissue, Corrsight mit IBIDI flowthrough chamber, Correlative Light Atomic Force Electronic Microscopy (CLAFEM), Atmospheric EM CLEM, and High-precision correlation, amongst other topics. Chapters in this ongoing series deal with different approaches for analyzing the same specimen using more than...
The combination of electron microscopy with transmitted light microscopy (termed correlative light and electron microscopy; CLEM) has been employed for decades to generate molecular identification that can be visualized by a dark, electron-dense precipitate. This new volume of Methods in Cell Biology covers many areas of CLEM, including a brief history and overview on CLEM methods, imaging of intermediate stages of meiotic spindle assembly in C. elegans embryos using CLEM, and capturing endocytic segregation events with HPF-CLEM. - Covers many areas of CLEM by the best international scientists in the field - Includes a brief history and overview on CLEM methods
This book presents the newest technology in electron microscopy. It comprises two major areas of electron microscopy - transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The volume provides clear, concise instructions on processing biological specimens and includes discussion on the underlying principles of the majority of the processes presented. A notes section enables efficient adaptation and troubleshooting of protocols.
Cell biology spans among the widest diversity of methods in the biological sciences. From physical chemistry to microscopy, cells have given up with secrets only when the questions are asked in the right way! This new volume of Methods in Cell Biology covers laboratory methods in cell biology, and includes methods that are among the most important and elucidating in the discipline, such as bioluminescent imaging of gene expressions, confocal imaging, and electron microscopy of bone. - Covers the most important laboratory methods in cell biology - Chapters written by experts in their fields
The previous edition of this book marked the shift in technology from video to digital camera use with microscope use in biological science. This new edition presents some of the optical fundamentals needed to provide a quality image to the digital camera. Specifically, it covers the fundamental geometric optics of finite- and infinity-corrected microscopes, develops the concepts of physical optics and Abbe's theory of image formation, presents the principles of Kohler illumination, and finally reviews the fundamentals of fluorescence and fluorescence microscopy. The second group of chapters deals with digital and video fundamentals: how digital and video cameras work, how to coordinate cameras with microscopes, how to deal with digital data, the fundamentals of image processing, and low light level cameras. The third group of chapters address some specialized areas of microscopy that allow sophisticated measurements of events in living cells that are below the optical limits of resolution. - Expands coverage to include discussion of confocal microscopy not found in the previous edition - Includes "traps and pitfalls" as well as laboratory exercises to help illustrate methods