You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of th...
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'on...
Valuation theory is used constantly in algebraic number theory and field theory, and is currently gaining considerable research interest. Ribenboim fills a unique niche in the literature as he presents one of the first introductions to classical valuation theory in this up-to-date rendering of the authors long-standing experience with the applications of the theory. The presentation is fully up-to-date and will serve as a valuable resource for students and mathematicians.
The immensely popular Guinness Book of World Records lacked a chapter on prime numbers. The also popular Book of Prime Number Records, however, fills this need. This abridged version, written by the same author, is devoted to presenting records concerning prime numbers, but it also explores the interface between computations and the theory of prime numbers. The book contains an up-to-date historical presentation of the main problems pertaining to prime numbers, as well as many fascinating topics, including primality testing. It is written in a light and humours language without secrets and is thoroughly accessible to everyone. TOC:* Preface * Guiding the Reader * Index of Notations * Introduction * How Many Prime Numbers Are There? * How to Recognize Whether a Natural Number is a Prime * Are There Functions Defining Prime Numbers? * How Are the Prime Numbers Distributed? * Which Special Kinds of Primes Have Been Considered? * Heuristic and Probabilistic Results about Prime Numbers * Conclusion * Bibliography * Primes up to 10,000 * Index of Tables * Index of Records * Index of Names * Gallimawfries * Subject Index
Lecture I The Early History of Fermat's Last Theorem.- 1 The Problem.- 2 Early Attempts.- 3 Kummer's Monumental Theorem.- 4 Regular Primes.- 5 Kummer's Work on Irregular Prime Exponents.- 6 Other Relevant Results.- 7 The Golden Medal and the Wolfskehl Prize.- Lecture II Recent Results.- 1 Stating the Results.- 2 Explanations.- Lecture III B.K. = Before Kummer.- 1 The Pythagorean Equation.- 2 The Biquadratic Equation.- 3 The Cubic Equation.- 4 The Quintic Equation.- 5 Fermat's Equation of Degree Seven.- Lecture IV The Naïve Approach.- 1 The Relations of Barlow and Abel.- 2 Sophie Germain.- 3 Co.
This two-volume collection contains Paulo Ribenboim’s work on ordered structures and mathematical logic. Two long unpublished papers and a reproduction of his first book on abelian groups are also featured in these volumes. With over 240 publications, including 13 books, Ribenboim is responsible for some of the most influential research in number theory, mathematical logic, and algebraic structures. Together, these volumes include papers on algebraic structures on directed graphs, real algebraic geometry, applications of model theory in collaboration with Lou van den Dries, and more recent papers with Sibylla Priess-Crampe on mathematical logic programming and Ultrametric spaces. The Ribenboim Prize of the Canadian Number Theory Association is named after him. Paulo Ribenboim is currently professor emeritus at Queen’s University in Kingston, Ontario.
This selection of expository essays by Paulo Ribenboim should be of interest to mathematicians from all walks. Ribenboim, a highly praised author of several popular titles, writes each essay in a light and humorous language without secrets, making them thoroughly accessible to everyone with an interest in numbers. This new collection includes essays on Fibonacci numbers, prime numbers, Bernoulli numbers, and historical presentations of the main problems pertaining to elementary number theory, such as Kummers work on Fermat's last theorem.
This two-volume collection contains Paulo Ribenboim’s work on ordered structures and mathematical logic. Two long unpublished papers and a reproduction of his first book on abelian groups are also featured in these volumes. With over 240 publications, including 13 books, Ribenboim is responsible for some of the most influential research in number theory, mathematical logic, and algebraic structures. Together, these volumes include papers on algebraic structures on directed graphs, real algebraic geometry, applications of model theory in collaboration with Lou van dem Dries, and more recent papers with Sibylla Priess-Crampe on mathematical logic programming and Ultrametric spaces. Originally from Brazil, Ribenboim is currently professor emeritus at Queen’s University in Kingston, Ontario. The Ribenboim Prize of the Canadian Number Theory Association is named after him.
This text provides a historical study of the efforts of mathematicians to solve Catalan's problem. It covers divisibility conditions and analytical methods.