You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
This book describes fundamental computational methods for image reconstruction in computed tomography (CT) with a focus on a pedagogical presentation of these methods and their underlying concepts. Insights into the advantages, limitations, and theoretical and computational aspects of the methods are included, giving a balanced presentation that allows readers to understand and implement CT reconstruction algorithms. Unique in its emphasis on the interplay between modeling, computing, and algorithm development, Computed Tomography: Algorithms, Insight, and Just Enough Theory develops the mathematical and computational aspects of three main classes of reconstruction methods: classical filtere...
Describes the deblurring algorithms and techniques collectively known as spectral filtering methods, in which the singular value decomposition, or a similar decomposition with spectral properties, is used to introduce the necessary regularization or filtering in the reconstructed image. The concise MATLAB® implementations described in the book provide a template of techniques that can be used to restore blurred images from many applications.
Here is an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, tomography, seismology, astronomy, and other areas. Rank-deficient problems involve matrices that are either exactly or nearly rank deficient. Such problems often arise in connection with noise suppression and other problems where the goal is to suppress unwanted disturbances of the given measurements. Discrete ill-posed problems arise in connection with the numerical treatment of inverse problems, where one typically wants to compute information about some interior properties using exterior measurements. Examples of inverse ...
A lucid explanation of the intricacies of both simple and complex least squares methods. As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a numbe...
“The book's focus on imaging problems is very unique among the competing books on inverse and ill-posed problems. …It gives a nice introduction into the MATLAB world of images and deblurring problems.” — Martin Hanke, Professor, Institut für Mathematik, Johannes-Gutenberg-Universität.When we use a camera, we want the recorded image to be a faithful representation of the scene that we see, but every image is more or less blurry. In image deblurring, the goal is to recover the original, sharp image by using a mathematical model of the blurring process. The key issue is that some information on the lost details is indeed present in the blurred image, but this “hidden” information ...
This collection of conference papers describes state-of-the-art methodologies and algorithms used in the treatment of inverse problems, focusing on seismology and image processing. The papers also describe new general methodologies for analysis and solution of inverse problems by means of statistical and deterministic algorithms. The book gives a glimpse of recent techniques, many of which are still under development.
Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
"Real and complex exponential data fitting is an important activity in many different areas of science and engineering, ranging from Nuclear Magnetic Resonance Spectroscopy and Lattice Quantum Chromodynamics to Electrical and Chemical Engineering, Vision a"
This book is an introduction to both computational inverse problems and uncertainty quantification (UQ) for inverse problems. The book also presents more advanced material on Bayesian methods and UQ, including Markov chain Monte Carlo sampling methods for UQ in inverse problems. Each chapter contains MATLAB? code that implements the algorithms and generates the figures, as well as a large number of exercises accessible to both graduate students and researchers. Computational Uncertainty Quantification for Inverse Problems is intended for graduate students, researchers, and applied scientists. It is appropriate for courses on computational inverse problems, Bayesian methods for inverse problems, and UQ methods for inverse problems.