You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This softcover book summarizes Lyapunov design techniques for nonlinear systems and raises important issues concerning large-signal robustness and performance. The authors have been the first to address some of these issues, and they report their findings in this text. The researcher who wishes to enter the field of robust nonlinear control could use this book as a source of new research topics. For those already active in the field, the book may serve as a reference to a recent body of significant work. Finally, the design engineer faced with a nonlinear control problem will benefit from the techniques presented here.
The 1990 Grainger Lectures delivered at the University of Illinois, Urbana-Champaign, September 28 - October 1, 1990 were devoted to a critical reexamination of the foundations of adaptive control. In this volume the lectures are expanded by most recent developments and solutions for some long-standing open problems. Concepts and approaches presented are both novel and of fundamental importance for adaptive control research in the 1990s. The papers in Part I present unifications, reappraisals and new results on tunability, convergence and robustness of adaptive linear control, whereas the papers in Part II formulate new problems in adaptive control of nonlinear systems and solve them without any linear constraints imposed on the nonlinearities.
Using a pedagogical style along with detailed proofs and illustrative examples, this book opens a view to the largely unexplored area of nonlinear systems with uncertainties. The focus is on adaptive nonlinear control results introduced with the new recursive design methodology--adaptive backstepping. Describes basic tools for nonadaptive backstepping design with state and output feedbacks.
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
This volume is an outgrowth of the workshop "Applications of Advanced Control Theory to Robotics and Automation, "organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore (Turi) Nicosia. Both Petar and Turi have carried out distinguished work in the control community and have long been recognized as mentors, as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments. The scope of the work is very broad, and although each chapter is self-contained, the book has been organized into thematically related chapters, which in some cases, suggest to the reader a convenient reading sequence. The great variety of topics covered and the almost tutorial writing style used by many of the authors will make this book suitable for both experts in the control field and young researchers who seek a more intuitive understanding of these relevant topics in the field.
The authors present an effective approach to handle some of the most common types of component imperfections encountered in industrial automation, consumer electroncis, and defence and transportation systems.
Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.
The articles in this volume cover power system model reduction, transient and voltage stability, nonlinear control, robust stability, computation and optimization and have been written by some of the leading researchers in these areas. This book should be of interest to power and control engineers, and applied mathematicians.
This book is a tribute to Prof. Alberto Isidori on the occasion of his 65th birthday. Prof. Isidori’s proli?c, pioneering and high-impact research activity has spanned over 35 years. Throughout his career, Prof. Isidori has developed ground-breaking results, has initiated researchdirections and has contributed towardsthe foundationofnonlinear controltheory.In addition,his dedication to explain intricate issues and di?cult concepts in a simple and rigorous way and to motivate young researchers has been instrumental to the intellectual growth of the nonlinear control community worldwide. The volume collects 27 contributions written by a total of 52 researchers. The principal author of each c...
A systematic and unified presentation of the fundamentals of adaptive control theory in both continuous time and discrete time Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory. Adaptive Control Design and Analysis features: Introduction to systems and control Stability, operator norms, and signal convergence Adaptive parame...