Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning
  • Language: en
  • Pages: 415

Machine Learning

Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.

Simply Logical
  • Language: en
  • Pages: 256

Simply Logical

  • Type: Book
  • -
  • Published: 1994-04-07
  • -
  • Publisher: Wiley

An introduction to Prolog programming for artificial intelligence covering both basic and advanced AI material. A unique advantage to this work is the combination of AI, Prolog and Logic. Each technique is accompanied by a program implementing it. Seeks to simplify the basic concepts of logic programming. Contains exercises and authentic examples to help facilitate the understanding of difficult concepts.

Abduction and Induction
  • Language: en
  • Pages: 317

Abduction and Induction

From the very beginning of their investigation of human reasoning, philosophers have identified two other forms of reasoning, besides deduction, which we now call abduction and induction. Deduction is now fairly well understood, but abduction and induction have eluded a similar level of understanding. The papers collected here address the relationship between abduction and induction and their possible integration. The approach is sometimes philosophical, sometimes that of pure logic, and some papers adopt the more task-oriented approach of AI. The book will command the attention of philosophers, logicians, AI researchers and computer scientists in general.

Logical and Relational Learning
  • Language: en
  • Pages: 395

Logical and Relational Learning

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

Data Mining and Decision Support
  • Language: en
  • Pages: 284

Data Mining and Decision Support

Data mining deals with finding patterns in data that are by user-definition, interesting and valid. It is an interdisciplinary area involving databases, machine learning, pattern recognition, statistics, visualization and others. Decision support focuses on developing systems to help decision-makers solve problems. Decision support provides a selection of data analysis, simulation, visualization and modeling techniques, and software tools such as decision support systems, group decision support and mediation systems, expert systems, databases and data warehouses. Independently, data mining and decision support are well-developed research areas, but until now there has been no systematic attempt to integrate them. Data Mining and Decision Support: Integration and Collaboration, written by leading researchers in the field, presents a conceptual framework, plus the methods and tools for integrating the two disciplines and for applying this technology to business problems in a collaborative setting.

Evaluating Learning Algorithms
  • Language: en
  • Pages: 423

Evaluating Learning Algorithms

The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.

Logic for Learning
  • Language: en
  • Pages: 276

Logic for Learning

This book provides a systematic approach to knowledge representation, computation, and learning using higher-order logic. For those interested in computational logic, it provides a framework for knowledge representation and computation based on higher-order logic, and demonstrates its advantages over more standard approaches based on first-order logic. For those interested in machine learning, the book explains how higher-order logic provides suitable knowledge representation formalisms and hypothesis languages for machine learning applications.

Machine Learning Refined
  • Language: en
  • Pages: 597

Machine Learning Refined

An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Relational Data Mining
  • Language: en
  • Pages: 422

Relational Data Mining

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Kernels for Structured Data
  • Language: en
  • Pages: 216

Kernels for Structured Data

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers.