You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The articles in this volume are based on recent research on the phenomenon of turbulence in fluid flows collected by the Institute for Mathematics and its Applications. This volume looks into the dynamical properties of the solutions of the Navier-Stokes equations, the equations of motion of incompressible, viscous fluid flows, in order to better understand this phenomenon. Although it is a basic issue of science, it has implications over a wide spectrum of modern technological applications. The articles offer a variety of approaches to the Navier-Stokes problems and related issues. This book should be of interest to both applied mathematicians and engineers.
Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.
This Festschrift is intended as a homage to our esteemed colleague, friend and maestro Giorgio Picci on the occasion of his sixty-?fth birthday. We have knownGiorgiosince our undergraduatestudies at the University of Padova, wherewe?rst experiencedhisfascinatingteachingin theclass ofSystem Identi?cation. While progressing through the PhD program, then continuing to collaborate with him and eventually becoming colleagues, we have had many opportunitiesto appreciate the value of Giorgio as a professor and a scientist, and chie?y as a person. We learned a lot from him and we feel indebted for his scienti?c guidance, his constant support, encouragement and enthusiasm. For these reasons we are pr...
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.
This IMA Volume in Mathematics and its Applications SHOCK INDUCED TRANSITIONS AND PHASE STRUCTURES IN GENERAL MEDIA is based on the proceedings of a workshop that was an integral part of the 1990-91 IMA program on "Phase Transitions and Free Boundaries." The workshop focused on the thermodynamics and mechanics of dynamic phase transitions that are mainly inertially driven and brought together physicists, metallurgists, mathematicians, engineers, and molecular dynamicists with interests in these problems. Financial support of the National Science Foundation made the meeting pos sible. We are grateful to J .E. Dunn, Roger Fosdick, and Marshall Slemrod for organizing the meeting and editing the...
Substances possessing heterogeneous microstructure on the nanometer and micron scales are scientifically fascinating and technologically useful. Examples of such substances include liquid crystals, microemulsions, biological matter, polymer mixtures and composites, vycor glasses, and zeolites. In this volume, an interdisciplinary group of researchers report their developments in this field. Topics include statistical mechanical free energy theories which predict the appearance of various microstructures, the topological and geometrical methods needed for a mathematical description of the subparts and dividing surfaces of heterogeneous materials, and modern computer-aided mathematical models and graphics for effective exposition of the salient features of microstructured materials.
The articles in this volume cover power system model reduction, transient and voltage stability, nonlinear control, robust stability, computation and optimization and have been written by some of the leading researchers in these areas. This book should be of interest to power and control engineers, and applied mathematicians.
This volume is based on lectures delivered at the 2020 AMS Short Course “Mean Field Games: Agent Based Models to Nash Equilibria,” held January 13–14, 2020, in Denver, Colorado. Mean field game theory offers a robust methodology for studying large systems of interacting rational agents. It has been extraordinarily successful and has continued to develop since its inception. The six chapters that make up this volume provide an overview of the subject, from the foundations of the theory to applications in economics and finance, including computational aspects. The reader will find a pedagogical introduction to the main ingredients, from the forward-backward mean field game system to the master equation. Also included are two detailed chapters on the connection between finite games and mean field games, with a pedestrian description of the different methods available to solve the convergence problem. The volume concludes with two contributions on applications of mean field games and on existing numerical methods, with an opening to machine learning techniques.
Building in China is about striking an architectural balance between the pull of monumental tradition and the push of technological novelty. Centering on the dynamic period of post-imperial and pre-Communist China, the book focuses on the building and city planning initiatives of Henry Murphy, a little-known American architect who initially ventured to China in 1914 to design a campus for the Yale-in-China programme, but who then found himself captivated by a professional and cultural challenge that lasted two decades: how to preserve China's rich architectural traditions while also designing new buildings using up-to-date Western technologies. Murphy's buildings were compromises — " wine ...
Optical networks epitomize complex communication systems, and they comprise the Internet’s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering.