You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Molecular dynamics is a well-established technique for simulating complex many-particle systems in many areas of physics, chemistry, and astrophysics. The huge computational requirements for simulations of large systems, especially with long-range forces, demand the use of massively parallel computers. Designing efficient algorithms for these problems is a highly non-trivial task. This book contains the invited talks and abstracts presented at a conference by more than 100 researchers from various fields: computer science, solid state physics, high energy physics, polymers, biochemistry, granular materials and astrophysics. Most of the contributions have been written by users of massively parallel computers and deal with practical issues, but there are also contributions tackling more fundamental algorithmic problems.
Complex Dynamics
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invari...
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
Incorporating chaos theory into psychology and the life sciences, this text includes empirical studies of neural encoding, memory, eye movements, warfare, business cycles and selection of time series analysis algorithms. There are theoretical chapters on emergence and social dynamics, and clinical contributions dealing with: the measurement of quality of life for psychiatric patients; psychosis; the organization of self; and the role of love in family dynamics. Finally ideas from non-linear dynamics are applied to understanding the creative process.
Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.
Investigation of the fractal and scaling properties of disordered systems has recently become a focus of great interest in research. Disordered or amorphous materials, like glasses, polymers, gels, colloids, ceramic superconductors and random alloys or magnets, do not have a homogeneous microscopic structure. The microscopic environment varies randomly from site to site in the system and this randomness adds to the complexity and the richness of the properties of these materials. A particularly challenging aspect of random systems is their dynamical behavior. Relaxation in disordered systems generally follows an unusual time-dependent trajectory. Applications of scaling and fractal concepts ...
In recent years statistical physics has made significant progress as a result of advances in numerical techniques. While good textbooks exist on the general aspects of statistical physics, the numerical methods and the new developments based on large-scale computing are not usually adequately presented. In this book 16 experts describe the application of methods of statistical physics to various areas in physics such as disordered materials, quasicrystals, semiconductors, and also to other areas beyond physics, such as financial markets, game theory, evolution, and traffic planning, in which statistical physics has recently become significant. In this way the universality of the underlying concepts and methods such as fractals, random matrix theory, time series, neural networks, evolutionary algorithms, becomes clear. The topics are covered by introductory, tutorial presentations.
The papers included here deal with the many faces of renormalization group formalism as it is used in different branches of theoretical physics. The subjects covered emphasize various applications to the theory of turbulence, chaos, quantum chaos in dynamical systems, spin systems and vector models. Also discussed are applications to related topics such as quantum field theory and chromodynamics, high temperature superconductivity and plasma physics.
Contents:NQR in High Tc-Superconductors (M E Garcia & K H Bennemann)On the Critical Temperature of Superconductors from Eliashberg Theory (R Combescot)Defects, Oxygen Ordering and Properties of La-Cu-O and Ba-Bi-O Superconductors (B Dabrowski et al)From Schafroth Pairs to Cooper Pairs (C P Enz)Superconductivity with Local Attraction (R Micnas & S Robaszkiewicz)Quasiparticles in Doped Quantum Antiferromagnets (P Prelovsek et al)Cellular Automata (P Grassberger)Lattice Gas Cellular Automata Beyond the Boltzmann Equation (M H Ernst)A Lattice Gas Model for Orientational Ordering in Liquids (D A Huckaby & M Shinmi)Group Theory and Phases of Superfluid 3He (H W Capel)Fluctuation Theory of Invar Systems (D Wagner)and others Readership: Condensed matter physicists.