You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The International School on Physics and Astrophysics of Ultra High Energy Cosmic Rays (UHECR2000) was held at the Observatoire de Paris–Meudon on June 26-29, 2000. This was the ?rst international school speci?cally dedicated to ultra high energy cosmic rays. Its aim was to familiarize with and attract students, physicists and astronomers into this quickly developing newresearch ?eld. The mysterious and currently unknown origin of the most energetic par- cles observed in Nature has triggered in recent years theoretical speculations ranging from electromagnetic acceleration to as yet undiscovered physics - yond the Standard Model. It has also lead to the development of several new detection ...
This book is a collection of comprehensive reviews on astrophysics at the highest energies. It puts together, for the first time, discussions of astrophysics from MeV to EeV energies and beyond. Observations at these energies reveal nuclear and particle physics throughout our galaxy as well as in the most extreme environments in the entire cosmos. These reports range from the recent spectacular results from the Compton Gamma Ray Observatory, including the latest information on enigmatic gamma ray bursts, to cosmic rays at the highest energies ever observed by man.
This book introduces young researchers to the exciting field of ultra-high energy astrophysics including charged particles, gamma rays and neutrinos. At ultra-high energy the radiation is produced by interactions of cosmic ray particles accelerated in explosive events such as supernovae or hypernovae, black holes or, possibly, the big bang. Through direct contact with senior scientists, now actively planning the next generation of experiments/models, the excitement and motivation for research at ultra-high energy was conveyed. The underpinning of these fields is a synthesis of knowledge and techniques from nuclear and particle physics, astronomy and cosmology. Informing the participants of this background, how it was derived, and the new challenges for the future are the major goal. Further, the course has helped to foster new astrophysical research and promoted contacts, which have resulted in new collaborations.
After developing his Law of Gravitation, Newton came to believe that the Universe was infinite and homogeneous on a large scale. Einstein's original intuition was similar to Newton's in that he thought our Universe was static, infinite, isotropic and homogeneous. The field equations of Einstein's general relativity are solved for this universe. One of the three solutions found, the "infinite closed universe", traps light within a finite portion of the universe. This infinite closed universe model is shown to fit all the data of the Hubble diagram better than the Big Bang, and it fits the recent supernova data without having to postulate mysterious dark energy. Using general relativity and th...
This book is a collection of comprehensive reviews on astrophysics at the highest energies. It puts together, for the first time, discussions of astrophysics from MeV to EeV energies and beyond. Observations at these energies reveal nuclear and particle physics throughout our galaxy as well as in the most extreme environments in the entire cosmos. These reports range from the recent spectacular results from the Compton Gamma Ray Observatory, including the latest information on enigmatic gamma ray bursts, to cosmic rays at the highest energies ever observed by man.
This volume documents an important event in the World Year of Physics 2005 and a continuation of the traditional international summer schools that have taken place in Romania regularly since 1964. On one hand, the study of exotic nuclei seeks answers about the structure and interaction of unique finite quantum mechanical many-body systems. On the other, it provides data that have an impact on the understanding of the origin of the elements in the Universe. The contributions, written by outstanding professors from prestigious research centers over the world, provide the reader with both comprehensive reviews and the most recent results in the field. Large experimental facilities are discussed...
“Neutrinos and Explosive Events in the Universe” brought together experts from diverse disciplines to offer a detailed view of the exciting new work in this part of High Energy Astrophysics. Sponsored by NATO as an Advanced Study Institute, and coordinated under the auspices of the International School of Cosmic Ray Astrophysics (14th biennial course), the ASI featured a full program of lectures and discussion in the ambiance of the Ettore Majorana Centre in Erice, Italy, including visits to the local Dirac and Chalonge museum collections as well as a view of the cultural heritage of southern Sicily. Enri- ment presentations on results from the Spitzer Infrared Space Telescope and the Or...
The scope of the book is to give an overview of the history of astroparticle physics, starting with the discovery of cosmic rays (Victor Hess, 1912) and its background (X-ray, radioactivity). The book focusses on the ways in which physics changes in the course of this history. The following changes run parallel, overlap, and/or interact: - Discovery of effects like X-rays, radioactivity, cosmic rays, new particles but also progress through non-discoveries (monopoles) etc. - The change of the description of nature in physics, as consequence of new theoretical questions at the beginning of the 20th century, giving rise to quantum physics, relativity, etc. - The change of experimental methods, cooperations, disciplinary divisions. With regard to the latter change, a main topic of the book is to make the specific multi-diciplinary features of astroparticle physics clear.
The symposium and workshop “Continuous Advances in QCD / Arkadyfest” was the fifth in the series of meetings organized by the William I Fine Theoretical Physics Institute at the University of Minnesota. This meeting brought together leading researchers in high-energy physics to exchange the latest ideas in QCD and gauge theories at strong coupling at large. It honored the 60th birthday of Professor Arkady Vainshtein, and the papers included in this proceedings volume also look back on the history of the subjects in which Arkady played such a central role: applications of PCAC, penguins, invisible axions, QCD sum rules, exact beta functions, condensates in supersymmetry, powerful heavy quark expansions, and new anomalies in 2D SUSY theories. The current status of these subjects was summarized in several excellent presentations that also outlined a historical perspective. A number of papers from leading researchers in the field present new developments and ideas in modern areas of study, such as the cosmological constant problem in extra-dimension theories, supersymmetric monopoles, solitons and confinement, AdS/CFT correspondence, and high density QCD.
The field equations of Einstein's General Relativity are solved for an infinite universe with uniform density. One of the three solutions, the Infinite Universe of Einstein and Newton, fits all the data for the Hubble diagram better than the Big Bang. Next, using general relativity and the physics that evolved from Newton, the force of gravity between two massive point particles is found. Utilizing this force and the Infinite Universe of Einstein and Newton model, the net force of gravity on a point particle in arbitrary motion, due the uniform mass distribution of the universe, is calculated by integration. This net force of gravity is found to be equal to the Force of Inertia. These calcul...