You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The two volume International Handbook of Earthquake and Engineering Seismology represents the International Association of Seismology and Physics of the Earth's Interior's (IASPEI) ambition to provide a comprehensive overview of our present knowledge of earthquakes and seismology. This state-of-the-art work is the only reference to cover all aspects of seismology--a "resource library" for civil and structural engineers, geologists, geophysicists, and seismologists in academia and industry around the globe.Part B, by more than 100 leading researchers from major institutions of science around the globe, features 34 chapters detailing strong-motion seismology, earthquake engineering, quake prediction and hazards mitigation, as well as detailed reports from more than 40 nations. Also available is The International Handbook of Earthquake and Engineering Seismology, Part A. - Authoritative articles by more than 100 leading scientists - Extensive glossary of terminology plus 2000+ biographical sketches of notable seismologists
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. It promotes a fundamental understanding of parameter estimation and inverse problem philosophy and methodology. It introduces readers to Classical and Bayesian approaches to linear and nonlinear problems, with particular attention to computational, mathematical, and statistical issues related to their application to geophysical problems. Four appendices review foundational concepts in linear algebra, statistics, vector calculus, and notation. Pedagogy includes hundreds of highlighted equations, examples, and definitions; introductory chapter synopses; end-of-...
For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography.* Written at a mathematical level that is appealing for undergraduates andbeginning graduate students* Provides a useful educational tool through a combination of observations andlaboratory demonstrations which can be viewed over the web* Contains instructions on how to reproduce the simple but informativelaboratory experiments* Includes copious problems (with sample answers) to help students learn thematerial.
This Second Edition of An Introduction to Atmospheric Radiation has been extensively revised to address the fundamental study and quantitative measurement of the interactions of solar and terrestrial radiation with molecules, aerosols, and cloud particles in planetary atmospheres. It contains 70% new material, much of it stemming from the investigation of the atmospheric greenhouse effects of external radiative perturbations in climate systems, and the development of methodologies for inferring atmospheric and surface parameters by means of remote sensing. Liou's comprehensive treatment of the fundamentals of atmospheric radiation was developed for students, academics, and researchers in atmospheric sciences, remote sensing, and climate modeling. - Balanced treatment of fundamentals and applications - Includes over 170 illustrations to complement the concise description of each subject - Numerous examples and hands-on exercises at the end of each chapter
Magnetic Stratigraphy is the most comprehensive book written in the English language on the subject of magnetic polarity stratigraphy and time scales. This volume presents the entirety of the known geomagneticrecord, which now extends back about 300 million years. The book includes the results of current research on sea floor spreading, magnetic stratigraphy of the Pliocene and Pleistocene, and postulations on the Paleozoic. Also included are both historicalbackground and applications of magnetostratigraphy. Individual chapters on correlation are presented, using changes in magnetic properties and secular variation.Key Features* Discusses pioneering work in the use of marine sediments to inv...
Topics involved in studies of the Earth's magnetic field and its secular variation range from the intricate observations of geomagnetism, to worldwide studies of archeomagnetism and paleomagnetism, through to the complex mathematics of dynamo theory. Traditionally these different aspects of geomagnetism have in the main been studied and presented in isolation from each other. This text draws together these lines of inquiry into an integrated framework to highlight the interrelationships and thus to provide a more comprehensive understanding of the geomagnetic field.
John S. Lewis
Air pollution has historically been viewed as a local or regional scale problem with attention focused on acute episodes such as the sulphur dioxide and smoke smogs of London in the 1950s and 1960s and the photochemical smogs of southern California first recognized by Haagen Smit in the early 1950s. In recent years, however, it has become apparent that human activity has, and still is, changing the chemical composition of the atmosphere on a global scale. The composition of the atmosphere has seen enormous changes due to natural processes since the formation of the planet. Data obtained from air bubbles trapped in polar ice are beginning to reveal information about these changes over the las...
This key new textbook provides a state-of-the-art view of the physics of cloud and precipitation formation, covering the most important topics in the field: the microphysics, thermodynamics and cloud-scale dynamics. Highlights include: the condensation process explained with new insights from chemical physics studies; the impact of the particle curvature (the Kelvin equation) and solute effect (the Köhler equation); homogeneous and heterogeneous nucleation from recent molecular dynamic simulations; and the hydrodynamics of falling hydrometeors and their impact on collision growth. 3D cloud-model simulations demonstrate the dynamics and microphysics of deep convective clouds and cirrus formation, and each chapter contains problems enabling students to review and implement their new learning. Packed with detailed mathematical derivations and cutting-edge stereographic illustrations, this is an ideal text for graduate and advanced undergraduate courses, and also serves as a reference for academic researchers and professionals working in atmospheric science, meteorology, climatology, remote sensing and environmental science.