You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presenting an introduction to the theory of Hopf algebras, the authors also discuss some important aspects of the theory of Lie algebras. This book includes a chapters on the Hopf algebra of symmetric functions, the Hopf algebra of representations of the symmetric groups, the Hopf algebras of the nonsymmetric and quasisymmetric functions, and the Hopf algebra of permutations.
This book is dedicated to the memory of Michael Marinov, the theorist who, together with Felix Berezin, introduced the classical description of spin by anticommuting Grassmann variables. It contains original papers and reviews by physicists and mathematicians written specifically for the book. These articles reflect the current status and recent developments in the areas of Marinov''s research: quantum tunneling, quantization of constrained systems, supersymmetry, and others. The personal recollections included portray the human face of M Marinov, a person of great knowledge and integrity.
It is unlikely that today there is a specialist in theoretical physics who has not heard anything about the algebraic Bethe ansatz. Over the past few years, this method has been actively used in quantum statistical physics models, condensed matter physics, gauge field theories, and string theory.This book presents the state-of-the-art research in the field of algebraic Bethe ansatz. Along with the results that have already become classic, the book also contains the results obtained in recent years. The reader will get acquainted with the solution of the spectral problem and more complex problems that are solved using this method. Various methods for calculating scalar products and form facto...
This book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects.
This volume comprises the specially prepared lecture notes of a a Summer School on "Factorization and Integrable Systems" held in September 2000 at the University of Algarve in Portugal. The main aim of the school was to review the modern factorization theory and its application to classical and quantum integrable systems. The program consisted of a number of short courses given by leading experts in the field.
Symmetries in Quantum Mechanics: From Angular Momentum to Supersymmetry (PBK) provides a thorough, didactic exposition of the role of symmetry, particularly rotational symmetry, in quantum mechanics. The bulk of the book covers the description of rotations (geometrically and group-theoretically) and their representations, and the quantum theory of angular momentum. Later chapters introduce more advanced topics such as relativistic theory, supersymmetry, anyons, fractional spin, and statistics. With clear, in-depth explanations, the book is ideal for use as a course text for postgraduate and advanced undergraduate students in physics and those specializing in theoretical physics. It is also useful for researchers looking for an accessible introduction to this important area of quantum theory.
There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field.
Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful c...
This volume contains the proceedings of the International Workshop on Operator Theory and Applications held at the University of Algarve in Faro, Portugal, September 12-15, in the year 2000. The main topics of the conference were !> Factorization Theory; !> Factorization and Integrable Systems; !> Operator Theoretical Methods in Diffraction Theory; !> Algebraic Techniques in Operator Theory; !> Applications to Mathematical Physics and Related Topics. A total of 94 colleagues from 21 countries participated in the conference. The major part of participants came from Portugal (32), Germany (17), Israel (6), Mexico (6), the Netherlands (5), USA (4) and Austria (4). The others were from Ukraine, Venezuela (3 each), Spain, Sweden (2 each), Algeria, Australia, Belorussia, France, Georgia, Italy, Japan, Kuwait, Russia and Turkey (one of each country). It was the 12th meeting in the framework of the IWOTA conferences which started in 1981 on an initiative of Professors 1. Gohberg (Tel Aviv) and J. W. Helton (San Diego). Up to now, it was the largest conference in the field of Operator Theory in Portugal.