You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
When Hans Bethe, at the age of 97, asked his long-term collaborator, Gerry Brown, to explain his scientific work to the world, the latter knew that this was a steep task. As the late John Bahcall famously remarked: OC If you know his (Bethe''s) work, you might be inclined to think he is really several people, all of whom are engaged in a conspiracy to sign their work with the same nameOCO. Almost eight decades of original research, hundreds of scientific papers, numerous books, countless reports spanning the key areas of 20th century physics are the impressive record of Hans Bethe''s academic work. In answering Bethe''s request, the editors enlisted the help of experts in the different resea...
This volume contains the lectures of invited speakers on the following topics: Collective excitations at zero and finite temperature; Algebraic and geometric symmetric nuclear models; Fundamental symmetries in nuclear physics; Fast rotating nuclei; Nuclei far from stability; Nuclear multifragmentation; Nuclear astrophysics; Subnucleonic degrees of freedom; Relativistic effects in nuclear physics; Quark-gluon plasma physics; Order and chaos in nuclear physics; Nuclear physics and atomic aggregates; Applied nuclear physics.
Every night, William thinks up reasons why he shouldn't go to bed. One evening there is a very BIG reason -- someone has come to visit William. Will his parents believe him? Does William ever get to sleep? This delightful story about that tricky time at the end of every young family's day is guaranteed to make both child and parent smile!
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant ...
In the last 20 years the disciplines of particle physics, astrophysics, nuclear physics and cosmology have grown together in an unprecedented way. A brilliant example is nuclear double beta decay, an extremely rare radioactive decay mode, which is one of the most exciting and important fields of research in particle physics at present and the flagship of non-accelerator particle physics.While already discussed in the 1930s, only in the 1980s was it understood that neutrinoless double beta decay can yield information on the Majorana mass of the neutrino, which has an impact on the structure of space-time. Today, double beta decay is indispensable for solving the problem of the neutrino mass s...
The main focus of this year's Proceedings of the 53rd Course of the International School of Subnuclear Physics is the future of physics, including the new frontiers in other fields.
Neutrino 94
This book, written by leading experts of the field, gives an excellent up-to-date overview of modern neutrino physics and is useful for scientists and graduate students alike. The book starts with a history of neutrinos and then develops from the fundamentals to the direct determination of masses and lifetimes. The role of neutrinos in fundamental astrophysical problems is discussed in detail.
"This volume offers a valuable insight into various aspects of the ongoing work directed at measuring neutrino mass. It took twenty years to refute the assertions of Bethe and Peierls that neutrinos were not observable, but it has since been realised that much can be learnt from these particles. The moral is, as Fiorini argues here, that the study of neutrinos was and remains demanding but rewarding. Subjects addressed in this volume include: clarifying the meaning of the Klapdor-Kleingrothaus results, probing the Majorana nature of neutrinos, observing lepton number violating effects for the first time, studying the end point of the spectrum in the search for neutrino masses and speculating...