You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The past several years have witnessed a striking number of important developments in Complex Analysis. One of the characteristics of these developments has been to bridge the gap existing between the theory of functions of one and of several complex variables. The Special Year in Complex Analysis at the University of Maryland, and these proceedings, were conceived as a forum where these new developments could be presented and where specialists in different areas of complex analysis could exchange ideas. These proceedings contain both surveys of different subjects covered during the year as well as many new results and insights. The manuscripts are accessible not only to specialists but to a broader audience. Among the subjects touched upon are Nevanlinna theory in one and several variables, interpolation problems in Cn, estimations and integral representations of the solutions of the Cauchy-Riemann equations, the complex Monge-Ampère equation, geometric problems in complex analysis in Cn, applications of complex analysis to harmonic analysis, partial differential equations.
This volume grew out of a conference in honor of Boris Korenblum on the occasion of his 80th birthday, held in Barcelona, Spain, November 20-22, 2003. The book is of interest to researchers and graduate students working in the theory of spaces of analytic function, and, in particular, in the theory of Bergman spaces.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Schwarzian derivatives and cylinder maps by A. Bonifant and J. Milnor Holomorphic dynamics: Symbolic dynamics and self-similar groups by V. Nekrashevych Are there critical points on the boundaries of mother hedgehogs? by D. K. Childers Finiteness for degenerate polynomials by L. DeMarco Cantor webs in the parameter and dynamical planes of rational maps by R. L. Devaney Simple proofs of uniformization theorems by A. A. Glutsyuk The Yoccoz combinatorial analytic invariant by C. L. Petersen and P. Roesch Bifurcation loci of exponential maps and quadratic polynomials: Local connectivity, triviality of fibers, and density of hyperbolicity by L. Rempe and D. Schleicher Rational and transcendental ...
None
None
None
This textbook was designed for a first course in differential and integral calculus, and is directed toward students in engineering, the sciences, mathematics, and computer science. Its major goal is to bring students to a level of technical competence and intuitive understanding of calculus that is adequate for applying the subject to real world problems. The text contains major sections on: (1) linear functions and derivatives; (2) computing derivatives; (3) applications of derivatives; (4) integrals; and (5) infinite series. The activities contained within these chapters are designed so that students can first study the exercise set and the solutions. Next, the students are asked to make modifications to the original problem, solve it, and move on to the variations. The appendices include math tables, additional reading and exercises, solutions, and hints to the exercises. (TW)