Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Foundations of Learning Classifier Systems
  • Language: en
  • Pages: 354

Foundations of Learning Classifier Systems

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.

Applications of Learning Classifier Systems
  • Language: en
  • Pages: 309

Applications of Learning Classifier Systems

  • Type: Book
  • -
  • Published: 2012-08-13
  • -
  • Publisher: Springer

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw a...

Strength or Accuracy: Credit Assignment in Learning Classifier Systems
  • Language: en
  • Pages: 315

Strength or Accuracy: Credit Assignment in Learning Classifier Systems

Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi tion/action rules. Inreinforcement learning tasks they simultaneously address the two major problems of learning a policy and generalising over it (and re lated objects, such as value functions). Despite over 20 years of research, however, classifier systems have met with mixed success, for reasons which were often unclear. Finally, in 1995 Stewart Wilson claimed a long-awaited breakthrough with his XCS system, which differs from earlier classifier sys tems in a number of respects, the most significant of which is the way in which it calculates th...

Genetic and Evolutionary Computation — GECCO 2003
  • Language: en
  • Pages: 1317

Genetic and Evolutionary Computation — GECCO 2003

The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based software engineering.

Rule-Based Evolutionary Online Learning Systems
  • Language: en
  • Pages: 279

Rule-Based Evolutionary Online Learning Systems

  • Type: Book
  • -
  • Published: 2006-01-04
  • -
  • Publisher: Springer

Rule-basedevolutionaryonlinelearningsystems,oftenreferredtoasMichig- style learning classi?er systems (LCSs), were proposed nearly thirty years ago (Holland, 1976; Holland, 1977) originally calling them cognitive systems. LCSs combine the strength of reinforcement learning with the generali- tion capabilities of genetic algorithms promising a ?exible, online general- ing, solely reinforcement dependent learning system. However, despite several initial successful applications of LCSs and their interesting relations with a- mal learning and cognition, understanding of the systems remained somewhat obscured. Questions concerning learning complexity or convergence remained unanswered. Performanc...

Artificial Intelligence and Games
  • Language: en
  • Pages: 350

Artificial Intelligence and Games

  • Type: Book
  • -
  • Published: 2018-02-17
  • -
  • Publisher: Springer

This is the first textbook dedicated to explaining how artificial intelligence (AI) techniques can be used in and for games. After introductory chapters that explain the background and key techniques in AI and games, the authors explain how to use AI to play games, to generate content for games and to model players. The book will be suitable for undergraduate and graduate courses in games, artificial intelligence, design, human-computer interaction, and computational intelligence, and also for self-study by industrial game developers and practitioners. The authors have developed a website (http://www.gameaibook.org) that complements the material covered in the book with up-to-date exercises, lecture slides and reading.

Advances in Neural Networks: Computational and Theoretical Issues
  • Language: en
  • Pages: 392

Advances in Neural Networks: Computational and Theoretical Issues

  • Type: Book
  • -
  • Published: 2015-06-05
  • -
  • Publisher: Springer

This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive and context-aware Information Communication Technologies.

Artificial Intelligence & Games
  • Language: en
  • Pages: 390

Artificial Intelligence & Games

As has been pointed out by several industrial game AI developers the lack of behavioral modularity across games and in-game tasks is detrimental for the development of high quality AI [605, 171]. An increasingly popular method for ad-hoc behavior authoring that eliminates the modularity limitations of FSMs and BTs is the utility-based AI approach which can be used for the design of control and decision making systems in games [425, 557]. Following this approach, instances in the game get assigned a particular utility function that gives a value for the importance of the particular instance [10, 169]. For instance, the importance of an enemy being present at a particular distance or the impor...

Artificial Evolution
  • Language: en
  • Pages: 216

Artificial Evolution

  • Type: Book
  • -
  • Published: 2010-06-27
  • -
  • Publisher: Springer

Annotation. This book constitutes the proceedings of the 9th International Conference on Artificial Evolution, held in Strasbourg, France, in October 2009.

Parallel Problem Solving from Nature - PPSN XII
  • Language: en
  • Pages: 562

Parallel Problem Solving from Nature - PPSN XII

  • Type: Book
  • -
  • Published: 2012-08-27
  • -
  • Publisher: Springer

The two volume set LNCS 7491 and 7492 constitutes the refereed proceedings of the 12th International Conference on Parallel Problem Solving from Nature, PPSN 2012, held in Taormina, Sicily, Italy, in September 2012. The total of 105 revised full papers were carefully reviewed and selected from 226 submissions. The meeting began with 5 workshops which offered an ideal opportunity to explore specific topics in evolutionary computation, bio-inspired computing and metaheuristics. PPSN 2012 also included 8 tutorials. The papers are organized in topical sections on evolutionary computation; machine learning, classifier systems, image processing; experimental analysis, encoding, EDA, GP; multiobjective optimization; swarm intelligence, collective behavior, coevolution and robotics; memetic algorithms, hybridized techniques, meta and hyperheuristics; and applications.