You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. Th...
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
The book comprises contributions by some of the most respected scientists in the field of mathematical modeling and numerical simulation of the human cardiocirculatory system. It covers a wide range of topics, from the assimilation of clinical data to the development of mathematical and computational models, including with parameters, as well as their efficient numerical solution, and both in-vivo and in-vitro validation. It also considers applications of relevant clinical interest. This book is intended for graduate students and researchers in the field of bioengineering, applied mathematics, computer, computational and data science, and medicine wishing to become involved in the highly fascinating task of modeling the cardiovascular system.
This volume contains a selection of papers presented at the 21st international conference on domain decomposition methods in science and engineering held in Rennes, France, June 25-29, 2012. Domain decomposition is an active and interdisciplinary research discipline, focusing on the development, analysis and implementation of numerical methods for massively parallel computers. Domain decomposition methods are among the most efficient solvers for large scale applications in science and engineering. They are based on a solid theoretical foundation and shown to be scalable for many important applications. Domain decomposition techniques can also naturally take into account multiscale phenomena. This book contains the most recent results in this important field of research, both mathematically and algorithmically and allows the reader to get an overview of this exciting branch of numerical analysis and scientific computing.
Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.
This book introduces the mathematical concepts that underpin computer graphics. It is written in an approachable way, without burdening readers with the skills of ow to do'things. The author discusses those aspects of mathematics that relate to the computer synthesis of images, and so gives users a better understanding of the limitations of computer graphics systems. Users of computer graphics who have no formal training and wish to understand the essential foundations of computer graphics systems will find this book very useful, as will mathematicians who want to understand how their subject is used in computer image synthesis. '
This book constitutes the refereed proceedings of the 5th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2009, held in Nice, France in June 2009. The 54 revised full papers presented were carefully reviewed and selected from numerous submissions. The contributions cover topics such as cardiac imaging and electrophysiology, cardiac architecture imaging and analysis, cardiac imaging, cardiac electrophysiology, cardiac motion estimation, cardiac mechanics, cardiac image analysis, cardiac biophysical simulation, cardiac research platforms, and cardiac anatomical and functional imaging.
This book constitutes the refereed proceedings of the 8th International Conference on Functional Imaging and Modeling of the Heart, held in Maastricht, The Netherlands, in June 2015. The 54 revised full papers were carefully reviewed and selected from 72 submissions. The focus of the papers is on following topics: function; imaging; models of mechanics; and models of electrophysiology.
Mathematicalmodelingofhumanphysiopathologyisatremendouslyambitioustask. It encompasses the modeling of most diverse compartments such as the cardiovas- lar,respiratory,skeletalandnervoussystems,aswellasthemechanicalandbioch- ical interaction between blood ?ow and arterial walls, and electrocardiac processes and electric conduction in biological tissues. Mathematical models can be set up to simulate both vasculogenesis (the aggregation and organization of endothelial cells dispersed in a given environment) and angiogenesis (the formation of new vessels sprouting from an existing vessel) that are relevant to the formation of vascular networks, and in particular to the description of tumor grow...
The1stand2ndInternationalConferencesonFunctionalImagingandModelling of the Heart (FIMH) were held in Helsinki, Finland, in November 2001, and in Lyon, France, in June 2003. These meetings were born through a fruitful sci- ti?c collaboration between France and Finland that outreached to other groups and led to the start of this biennial event. The FIMH conference was the ?rst attempt to agglutinate researchers from several complementary but often i- lated ?elds: cardiac imaging, signal and image processing, applied mathematics and physics, biomedical engineering and computer science, cardiology, radi- ogy, biology, and physiology. In the ?rst two editions, the conference received an enthusias...