Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Atom Optics
  • Language: en
  • Pages: 332

Atom Optics

Quantum mechanics does away with the distinction between particles and waves, and one of the more interesting implications of the wave/particle duality - the discovery that atoms may be manipulated in ways analogous to the manipulation of light with lenses and mirrors - has formed the basis for the relatively new field of atom optics. Pierre Meystre's Atom Optics is the first book entirely devoted to this exciting area of research. Reference links to the leading journals in the field, links to research sites, graphics, and updates can be found online.

Elements of Quantum Optics
  • Language: en
  • Pages: 432

Elements of Quantum Optics

From the reviews: "This is a book that should be found in any physics library. It is extremely useful for all graduate students, Ph.D. students and researchers interested in the quantum physics of light." Optics & Photonics News

Quantum Optics
  • Language: en
  • Pages: 402

Quantum Optics

This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach ...

Advances In Laser Physics
  • Language: en
  • Pages: 166

Advances In Laser Physics

  • Type: Book
  • -
  • Published: 2000-07-06
  • -
  • Publisher: CRC Press

The birth of quantum electronics in the middle of the 20th century and the subsquent discovery of the laser led to new trends in physics and a number of photonic technolgies. This volume is dedicated to Peter Franken, a pioneer of nonlinear optics, and includes papers by the founders of quantum electronics, Aleksandr Prokhorov, Nicolaas Blombergen, and Norman Ramsey. The topics covered range from astronomy to nuclear and semiconductor physics, and from fundamental problems in quantum mechanics to applications in novel laser materials and nanoscience.

Elements of Quantum Optics
  • Language: en
  • Pages: 507

Elements of Quantum Optics

With a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light and the input-output formalism, this fourth edition of the brilliant work on quantum optics has been much updated. It still gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing.

Cavity Optomechanics
  • Language: en
  • Pages: 358

Cavity Optomechanics

  • Type: Book
  • -
  • Published: 2014-07-05
  • -
  • Publisher: Springer

During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.

Quantum Optomechanics and Nanomechanics
  • Language: en
  • Pages: 475

Quantum Optomechanics and Nanomechanics

  • Type: Book
  • -
  • Published: 2020
  • -
  • Publisher: Unknown

This book fully covers all aspects -- historical, theoretical, and experimental -- of the fields of quantum optomechanics and nanomechanics. These are essential parts of modern physics research, and relate to gravitational-wave detection (the subject of the Physics Nobel Prize 2017), and quantum information.

Exploring the Quantum
  • Language: en
  • Pages: 616

Exploring the Quantum

  • Type: Book
  • -
  • Published: 2006-08-11
  • -
  • Publisher: OUP Oxford

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.

Mechanical Action Of Light On Atoms
  • Language: en
  • Pages: 397

Mechanical Action Of Light On Atoms

Control of atomic motion with resonant laser light is the most interesting field of research which is rapidly expanding. The book discusses the latest theoretical and experimental achievements in the study of these phenomena. The fundamental questions of the theory of resonant light pressure are given in the book. They are: 1. Optical Stern-Gerlach Effect and Quantization of Atomic Motion in a Light Field; 2. Theory of Light Pressure Force and Atomic Kinetics in a Strong Field; 3. Diffraction and Interference of Atoms; 4. Velocity Bunching Effect, Cooling and Localization of Atoms in Light Field, and 5. Polarization Phenomena and Recoil Effect. The most important experiments are also discussed in this book. While the book may be used to get a primary acquaintance with the subject, specialists will also find the latest theoretical and experimental results and achievements in this field discussed here.

Modern Methods in Collisional-Radiative Modeling of Plasmas
  • Language: en
  • Pages: 220

Modern Methods in Collisional-Radiative Modeling of Plasmas

  • Type: Book
  • -
  • Published: 2016-02-25
  • -
  • Publisher: Springer

This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.