You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains 35 of the contributions to the international meeting Wave Phenomena: Modern Theory and Applications, held at the University of Toronto, Canada, at the end of June 1983.
A good deal of the material presented in this book has been prepared by top experts in the field lecturing in January 1987 at the Winter School on Solitons in Tiruchirapalli,India. The lectures begin at an elementary level but go on to include even the most recent developments in the field. The book makes a handy introduction to the various facets of the soliton concept, and will be useful both to newcomers to the field and to researchers who are interested in developments in new branches of physics and mathematics.
This volume offers a systematic, comprehensive investigation of field extensions, finite or not, that possess a Cogalois correspondence. The subject is somewhat dual to the very classical Galois Theory dealing with field extensions possessing a Galois correspondence. Solidly backed by over 250 exercises and an extensive bibliography, this book presents a compact and complete review of basic field theory, considers the Vahlen-Capelli Criterion, investigates the radical, Kneser, strongly Kneser, Cogalois, and G-Cogalois extensions, discusses field extensions that are simultaneously Galois and G-Cogalois, and presents nice applications to elementary field arithmetic.
Contributed articles on nonlinear mathematical applications published as an offshoot of a seminar held at Amritsar in 1998.
Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established.
This text provides a detailed introduction to number theory, demonstrating how other areas of mathematics enter into the study of the properties of natural numbers. It contains problem sets within each section and at the end of each chapter to reinforce essential concepts, and includes up-to-date information on divisibility problems, polynomial congruence, the sums of squares and trigonometric sums.;Five or more copies may be ordered by college or university bookstores at a special price, available on application.
Revised and updated throughout, this book presents the fundamental concepts of vector and tensor analysis with their corresponding physical and geometric applications - emphasizing the development of computational skills and basic procedures, and exploring highly complex and technical topics in simplified settings.;This text: incorporates transformation of rectangular cartesian coordinate systems and the invariance of the gradient, divergence and the curl into the discussion of tensors; combines the test for independence of path and the path independence sections; offers new examples and figures that demonstrate computational methods, as well as carify concepts; introduces subtitles in each section to highlight the appearance of new topics; provides definitions and theorems in boldface type for easy identification. It also contains numerical exercises of varying levels of difficulty and many problems solved.
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.