You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book details first the chemistry of hydrogen production from biomass. Solutions to the CO2 issue are given in three chapters, which describe CO2 photo catalytic reduction, CO2 sequestration in terrestrial biomass, and plants as renewable fuels. Further chapters review the selenium cycle in ecosystems, advanced processes to treat water and ecological ways to dye textiles. Society growth during the last century has almost entirely relied on the carbon economy, which is the use of fossil fuels for energy and materials. The carbon economy has provided and will still provide many benefits. However, the increasing use of fossil fuels is partly responsible for the increase of atmospheric CO2 concentrations and in turn, global warming. There is therefore an urgent need for cleaner fuels such as hydrogen, as well as a need for a carbon neutral economy where each emitted CO2 molecule is fast sequestered in plants, algae, soils, sub soils and sediments.
With the growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Biopolymer films have been regarded as potential replacements for synthetic films in food packaging due to a strong marketing trend toward environmentally friendly materials. Biopolymer-based films and coatings display good barrier properties, flexibility, transparency, economic profitability, and environmental compatibility. Therefore, they have successfully been used for packaging various food products. Biopolymer-Based Films and Coatings: Trends and Challenges elaborates on the recent methods and ingredients for making biodeg...
An incisive discussion of biofuel production from an economically informed technical perspective that addresses sustainability and commercialization together In Biodiesel Production: Feedstocks, Catalysts and Technologies, renowned chemists Drs Rokhum, Halder, Ngaosuwan and Assabumrungrat present an up-to-date account of the most recent developments, challenges, and trends in biodiesel production. The book addresses select feedstocks, including edible and non-edible oils, waste cooking oil, microalgae, and animal fats, and highlights their advantages and disadvantages from a variety of perspectives. It also discusses several catalysts used in each of their methods of preparation, as well as ...
The book focuses on how to implement discrete wavelet transform methods in order to solve problems of reaction–diffusion equations and fractional-order differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by wavelet methods for both classical and fractional-order differential equations; provides comprehensive information on the conceptual basis of wavelet theory and its applications; and strikes a sensible balance between mathematical rigour and the practical applications of wavelet theory. The book is divided into 11 chapters, the first three of which are devoted to the mathematical foundations and basics of wavelet theory. The remaining chapters provide wavelet-based numerical methods for linear, nonlinear, and fractional reaction–diffusion problems. Given its scope and format, the book is ideally suited as a text for undergraduate and graduate students of mathematics and engineering.
This book provides a comprehensive overview of the application of liquid biofuels to internal combustion (IC) engines. Biofuels are one of the most promising renewable and sustainable energy sources. Particularly, liquid biofuels obtained from biomass could become a valid alternative to the use of fossil fuels in the light of increasingly stringent environmental constraints. In this book, the discussion is limited to liquid biofuels obtained from triglycerides and lignocellulose among the many different kinds of biomass. Several liquid biofuels from triglycerides, straight vegetable oil, biodiesel produced from inedible vegetable oil, hydrotreated vegetable oil, and pyrolytic oil have been s...
Persistent and non-degradable, heavy metals stand as pollutants with the potential for severe ecological repercussions when released into the environment. Municipal and industrial wastewater face a high risk of contamination by these hazardous substances, posing a formidable challenge to water treatment technologies. The imperative is clear: effective and affordable methods for effluent treatment and metal recovery are essential for meeting regulatory standards and unlocking the latent value of valuable metals within the waste. However, new methods of accomplishing this challenge are necessary for increasing the effectiveness in both cost and application Biosorption Processes for Heavy Metal...