You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Information and communication technology (ICT) industry is said to account for 2% of the worldwide carbon emissions – a fraction that continues to grow with the relentless push for more and more sophisticated computing equipment, c- munications infrastructure, and mobile devices. While computers evolved in the directionofhigherandhigherperformanceformostofthelatterhalfofthe20thc- tury, the late 1990’s and early 2000’ssaw a new emergingfundamentalconcern that has begun to shape our day-to-day thinking in system design – power dissipation. As we elaborate in Chapter 1, a variety of factors colluded to raise power-ef?ciency as a ?rst class design concern in the designer’s mind, wi...
Over the past several years, embedded systems have emerged as an integral though unseen part of many consumer, industrial, and military devices. The explosive growth of these systems has resulted in embedded computing becoming an increasingly important discipline. The need for designers of high-performance, application-specific computing systems has never been greater, and many universities and colleges in the US and worldwide are now developing advanced courses to help prepare their students for careers in embedded computing.High-Performance Embedded Computing: Architectures, Applications, and Methodologies is the first book designed to address the needs of advanced students and industry pr...
High-Performance Embedded Computing, Second Edition, combines leading-edge research with practical guidance in a variety of embedded computing topics, including real-time systems, computer architecture, and low-power design. Author Marilyn Wolf presents a comprehensive survey of the state of the art, and guides you to achieve high levels of performance from the embedded systems that bring these technologies together. The book covers CPU design, operating systems, multiprocessor programs and architectures, and much more. Embedded computing is a key component of cyber-physical systems, which combine physical devices with computational resources for control and communication. This revised editi...
To the hard-pressed systems designer this book will come as a godsend. It is a hands-on guide to the many ways in which processor-based systems are designed to allow low power devices. Covering a huge range of topics, and co-authored by some of the field’s top practitioners, the book provides a good starting point for engineers in the area, and to research students embarking upon work on embedded systems and architectures.
Memory Issues in Embedded Systems-On-Chip: Optimizations and Explorations is designed for different groups in the embedded systems-on-chip arena. First, it is designed for researchers and graduate students who wish to understand the research issues involved in memory system optimization and exploration for embedded systems-on-chip. Second, it is intended for designers of embedded systems who are migrating from a traditional micro-controllers centered, board-based design methodology to newer design methodologies using IP blocks for processor-core-based embedded systems-on-chip. Also, since Memory Issues in Embedded Systems-on-Chip: Optimization and Explorations illustrates a methodology for optimizing and exploring the memory configuration of embedded systems-on-chip, it is intended for managers and system designers who may be interested in the emerging capabilities of embedded systems-on-chip design methodologies for memory-intensive applications.
ETAPS2000 was the third instance of the EuropeanJoint Conferenceson Theory and Practice of Software. ETAPS is an annual federated conference that was established in 1998 by combining a number of existing and new conferences. This year it comprised ?ve conferences (FOSSACS, FASE, ESOP, CC, TACAS), ?ve satellite workshops (CBS, CMCS, CoFI, GRATRA, INT), seven invited lectures, a panel discussion, and ten tutorials. The events that comprise ETAPS address various aspects of the system - velopment process, including speci?cation, design, implementation, analysis, and improvement. The languages, methodologies, and tools which support these - tivities are all well within its scope. Di?erent blends of theory and practice are represented, with an inclination towards theory with a practical motivation on one hand and soundly-based practice on the other. Many of the issues involved in software design apply to systems in general, including hardware systems, and the emphasis on software is not intended to be exclusive.
This book constitutes the refereed proceedings of the 9th International Conference on High Performance Computing, HiPC 2002, held in Bangalore, India in December 2002. The 57 revised full contributed papers and 9 invited papers presented together with various keynote abstracts were carefully reviewed and selected from 145 submissions. The papers are organized in topical sections on algorithms, architecture, systems software, networks, mobile computing and databases, applications, scientific computation, embedded systems, and biocomputing.
The current embedded processors often do not satisfy increasingly demanding computation requirements of embedded applications within acceptable energy efficiency, whereas application-specific integrated circuits require excessive design costs. In the Stanford Elm project, it was identified that instruction and data delivery, not computation, dominate the energy consumption of embedded processors. Consequently, the energy efficiency of delivering instructions and data must be sufficiently improved to close the efficiency gap between application-specific integrated circuits and programmable embedded processors. This dissertation demonstrates that the compiler and run-time system can play a cru...
Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods an
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increa...