You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book captures the key developments at the synthetic receptor/biology/detection science interface with chapters demonstrating how growing disciplines are being used to develop new smart materials for diagnostic sensor and biosensor applications.
There are many remaining challenges impeding future progress in field of Clinical Diagnostics. This book presents a technical assessment and vision of clinical leaders, scoping the clinical and other diagnostic needs and the bottle-necks in their cognate fields. Issues of real environmental biological measurements from the perspective of the end-user are presented and thus the book serves to inform the direction of the fundamental scientific efforts. Both editors are experienced practitioners within the biosensor technology and are involved first-hand with the healthcare and clinical applications of detection science.
A comprehensive look at the state of the art in detection technologies and materials used in the development of diagnostics for clinical, medicinal and environmental applications.
In developing the electronic nose and biosensor devices, researchers not only copy biochemical pathways, but also use nature's approach to signal interpretation as a blueprint for man-made sensing systems. Commercial biosensors have demonstrated their benefits and practical applications, providing high sensitivity and selectivity, combined with a significant reduction in sample preparation assay time and the use of expensive reagents. The Handbook of Biosensors and Electronic Noses discusses design and optimization for the multitude of practical uses of these devices including:
Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems will cover the up-to-date biosensor technologies used for the detection of bacteria. Written by the world's most renowned and learned scientists each in their own area of expertise, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems is the first title to cover this expanding research field.
This revision of the introductory textbook of physical chemistry has been designed to broaden its appeal, particularly to students with an interest in biological applications.
Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring an...
This book covers new materials used as analytical devices for increasing the interactions between the development of new analytical devices and materials science. The authors describe how different types of materials such as polymers, self-assembled layers, phthalocyanines, and nanomaterials can further enhance sensitivity and promote selectivity between analytes for different applications. They explain how continuing research and discussion into materials science for chemical sensing is stimulating the search for different strategies and technologies that extract information for these chemical sensors in order to obtain a chemical fingerprint of samples.
Elements of Physical Chemistry has been carefully crafted to help students increase their confidence when using physics and mathematics to answer fundamental questions about the structure of molecules, how chemical reactions take place, and why materials behave the way they do.
Selected, peer reviewed papers from the 8th International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications, December 2-6, 2013, Las Vegas, USA