You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the last ten years, elements of the formalism of quantum mechanics have been successfully applied beyond physics in areas such as psychology (especially cognition), economics and finance (especially in the formalization of so-called ‘decision making’), political science, and molecular biology. An important stream of work along these lines, commonly under the heading of quantum-like modeling, has been published in well regarded scientific journals, and major publishers have devoted entire books to the topic. This Festschrift honors a key figure in this field of research: Andrei Khrennikov, who made momentous contributions to it and to quantum foundations themselves. While honoring th...
Already Einstein could never see quantum mechanics as a complete theory. Nowadays, many researchers, including 't Hooft, view quantum mechanics as a statistical description of some underlying reality. The workshop Beyond the Quantum, organized in Spring 2006 at the Lorentz Center in Leiden, The Netherlands, was one of the first meetings completely devoted to physics that may need an explanation beyond quantum mechanics. A broad variety of subjects was covered. The present book reflects this.
It has been said that `String theorists talk to string theorists and everyone else wonders what they are saying'. This book will be a great help to those researchers who are challenged by modern quantum field theory. Quantum field theory experienced a renaissance in the late 1960s. Here, participants in the Les Houches sessions of 1970/75, now key players in quantum field theory and its many impacts, assess developments in their field of interest and provide guidance to young researchers challenged by these developments, but overwhelmed by their complexities. The book is not a textbook on string theory, rather it is a complement to Polchinski's book on string theory. It is a survey of current problems which have their origin in quantum field theory.
None
In this text, Cartier and DeWitt-Morette, using their complementary interests and expertise, successfully condense and apply the essentials of Functional Integration to a great variety of systems, showing this mathematically elusive technique to be a robust, user friendly and multipurpose tool.
This book is a revised and updated version of the most comprehensive text on nuclear and subnuclear physics, first published in 1995. It maintains the original goal of providing a clear, logical, in-depth, and unifying treatment of modern nuclear theory, ranging from the nonrelativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. In addition, new chapters on the theoretical and experimental advances made in nuclear and subnuclear physics in the past decade have been incorporated.Four key topics are emphasized: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. New chapters have been added on the many-particle shell model, effective field theory, density functional theory, heavy-ion reactions and quark-gluon plasma, neutrinos, and electron scattering.This book is designed to provide graduate students with a basic understanding of modern nuclear and hadronic physics needed to explore the frontiers of the field. Researchers will benefit from the updates on developments and the bibliography.
"This book is a revised and updated version of the most comprehensive text on nuclear physics, first published in 1995. It maintains the original goal of providing a clear, logical, in-depth and unifying treatment of modern nuclear theory, ranging from the nonrelativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. In addition, new chapters on the theoretical and experimental advances made in nuclear physics in the past decade have been incorporated." "This book is designed to provide graduate students with a basic understanding of modern nuclear and hadronic physics needed to explore the frontiers of the field. Researchers will benefit from the updates on developments and the bibliography."--Jacket.
Boltzmann''s formula S = In[ W (E) ] defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a price to pay OCo for example, phase transitions can only be defined in the thermodynamic limit of infinite system size. The question how phase transitions show up from systems with, say, 100 particles with an increasing number towards the bulk can only be answered when one finds a way to define and classify phase transitions in small systems. This is all possible within Boltzmann''s original defini...
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other. This book provides both tutorial material on the st...