You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a pedagogical, updated and modern view of the Sun from its interior to its exterior as well as the SunOCoEarth system. Written by eminent scientists in solar physics, the chapters deal with recent advances in solar physics, seismic Sun, solar magnetic field, waves and oscillations, spectroscopic diagnostics of solar plasmas, partially ionized lower atmosphere, coronal heating, coronal mass ejections, radio Sun, solar wind, and the SunOCoEarth system. Each chapter is fully illustrated and has a comprehensive reference list. The book covers all major topics in solar physics, and presents a rich menu to motivate graduate students who wish to pursue a solar physics research career.
Significant advances have been made recently in both the theoretical understanding and observation of small-scale turbulence in different layers of the Sun, and in the instabilities that give rise to them. The general development of solar physics, however, has led to such a degree of specialization as to hinder interaction between workers in the field. This book therefore presents studies of different layers and regions of the Sun, but from the same aspect, concentrating on the study of small-scale motions. The main emphasis is on the common theoretical roots of these phenomena, but the book also contains an extensive treatment of the observational aspects.
This collection of papers offers a timely snapshot of helio- and asteroseismology in the era when SOHO/MDI instrument is about to be replaced by SDO/HMI and when the CoRoT space mission is yielding its first long-duration light curves of thousands of stars.
Provides the latest summary on the solar coronal heating enigma and magneto-seismology of the solar atmosphere, for solar physics researchers.
These are the Proceedings of Colloquium No. 153 of the International Astro nomical Union, held at Makuhari near Tokyo on May 22 - 26, 1995, and hosted by the National Astronomical Observatory. This meeting was intended to be an interdisciplinary meeting between re searchers of solar and stellar activity, in order for them to exchange the newest information in each field. While each of these areas has seen remarkable advances in recent years, and while the researchers in each field have felt that information from the other's domain would be extremely useful in their own work, there have not been very many opportunities for intensive exchanges of information between these closely related field...
“An Introduction to Waves and Oscillations in the Sun” is intended for students and researchers who work in the area of solar and astrophysics. This book contains an introduction to the Sun, basics of electrodynamics, magneto-hydrodynamics for force-free and current-free fields. It deals with waves in uniform media with relevance to sound waves and Alfven waves, and with waves in non-uniform media like surface waves or waves in a slab and cylindrical geometry. It also touches on instabilities in fluids and observational signatures of oscillations. Finally, there is an introduction to the area of helio-seismology, which deals with the internal structure of the Sun.
Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on...
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered que...