You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ ten was "Some Things You Can Do with 8L(2). " Some of the applications are outside representation theory, and some are to representation theory it self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens' prin ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semi...
The book presents the winners of the Abel Prize in mathematics for the period 2018-2022: - Robert P. Langlands (2018) - Karen K. Uhlenbeck (2019) - Hillel Furstenberg and Gregory Margulis (2020) - Lászlo Lóvász and Avi Wigderson (2021) - Dennis P. Sullivan (2022) The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos from the period 2018-2022 showing many of the additional activities connected with the Abel Prize. This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer, 2014) as well as on The Abel Prize 2013-2017 (Springer, 2019), which profile the previous Abel Prize laureates.
Hermann Weyl was one of the most influential mathematicians of the twentieth century. Viewing mathematics as an organic whole rather than a collection of separate subjects, Weyl made profound contributions to a wide range of areas, including analysis, geometry, number theory, Lie groups, and mathematical physics, as well as the philosophy of science and of mathematics. The topics he chose to study, the lines of thought he initiated, and his general perspective on mathematics have proved remarkably fruitful and have formed the basis for some of the best of modern mathematical research. This volume contains the proceedings of the AMS Symposium on the Mathematical Heritage of Hermann Weyl, held in May 1987 at Duke University. In addition to honoring Weyl's great accomplishments in mathematics, the symposium also sought to stimulate the younger generation of mathematicians by highlighting the cohesive nature of modern mathematics as seen from Weyl's ideas. The symposium assembled a brilliant array of speakers and covered a wide range of topics. All of the papers are expository and will appeal to a broad audience of mathematicians, theoretical physicists, and other scientists.
Now in paperback, this graduate-level textbook is an introduction to the representation theory of semi-simple Lie groups. As such, it will be suitable for research students in algebra and analysis, and for research mathematicians requiring a readable account of the topic. The author emphasizes the development of the central themes of the sunject in the context of special examples, without losing sight of its general flow and structure. The book concludes with appendices sketching some basic topics with a comprehensive guide to further reading.
Nature, by dint of its constitution, harbors many unassuming mysteries broadly manifested by its constituent cohorts. If physics is the pivot that holds nature and chemistry provides reasons for its existence, then the rest is just manifestation. Nanoscience and technology harbor the congruence of these two core subjects, whereby many phenomenon may be studied in the same perspective. That nature operates at nanoscale—obeying the principles of thermodynamics and supramolecular chemistry—is a well understood fact manifested in a variety of life processes: bones are restored after a fracture; clots potentially leading to cerebral strokes can be dissolved. The regeneration of new structures...
This edited book deals with latest comprehensive information on conventional and high throughput techniques and technologies that are recently used to study plant microbial interface for agricultural research and enhancing plant productivity. Plant microbiota are important for many plant growth promotion activity and agricultural productivity and are sustainable green technology for enhancing agricultural productivity under changing environment. The book covers recent information about the plant associated microbiota and their ecology. It discusses technologies to isolate and test microbiota inhabiting in different portion of plants. The book explores the conventional methods as well as the ...
Nanotechnology progresses its concerts and suitability by improving its effectiveness, security and also reducing the impact and risk. Various chapters in this book are written by eminent scientists and prominent researchers in the field of nanotechnology across the world. This book is focused to put emerging techniques forward using nanoparticles for safe and nutritional food production, protecting crops from pests, increasing nutritional value and providing solutions for various environmental issues. The outcome of this book creates a path for wide usage of nanoparticles in food, agriculture and the environment fields. This book has clear and simple illustrations, tables and case studies t...
Nonlinear Systems covers a wide range of topics in nonlinear science, from general nonlinear dynamics, soliton systems, and the solution of nonlinear differential and difference equations to the integrability of discrete nonlinear systems, and classical and quantum chaos. Its chapters reflect the current status of important nonlinear theories in various areas of applied mathematics and mathematical physics and collectively provide a comprehensive picture of new areas and their applications.
Over the past decade the world has seen the rise of the fascinating and diverse field currently recognized as nanotechnology. This book covers a broad spectrum of topics within nanotechnology, including synthesis techniques, various innovative characterization techniques, growth mechanisms of nanomaterials, the physics and chemistry of nanomaterials, diverse functionalization methods, and the various applications of nanomaterials in biology, therapeutics, energy, food science, and environmental science. It also discusses applications of nanostructured materials, integrative applications such as nano- and micro-electronic sensor devices, as well as agricultural and environmental remediation a...
With the recent shift of chemical fertilizers and pesticides to organic agriculture, the employment of microbes that perform significant beneficial functions for plants has been highlighted. This book presents timely discussion and coverage on the use of microbial formulations, which range from powdered or charcoal-based to solution and secondary metabolite-based bioformulations. Bioformulation development of biofertilizers and biopesticides coupled with the advantages of nanobiotechnology propose significant applications in the agricultural section including nanobiosensors, nanoherbicides, and smart transport systems for the regulated release of agrochemical. Moreover, the formulation of se...