You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Besides its obvious destructive potential, military R&D also serves to protect human lives, equipment and facilities against the effects of weapons. Concepts have therefore been developed that improve safety of stationary and mobile facilities against pressure waves, thermal radiation and fire. Effective, fast fire extinguishing equipment has been designed for tank compartments and motors. Closed buildings are demolished and landmines are removed with gas and dust explosions. Stringent safety requirements have been developed for the production of ammunition and explosives. Military and related industries have accumulated a vast knowledge and sophisticated experience that are very valuable in a variety of civil applications. The knowledge is based on theoretical and experimental research work, the origin of which sometimes dates back many centuries. It has often been classified and therefore has remained unknown to the civilian population, until now.
Sponsored by the U.S. Air Force Office of Scientific Research, this conference was held in Niagara Falls on July 6–9, 1981. This book includes material on the following topics: instrumentation and diagnostics, shock tube facilities and techniques, gas dynamic experiments, heat transfer and real gas effects, boundary layers, shock structure, shock propagation, laser and spectral optical studies, chem and kinetics, relaxation and excitation, ionization, dusty gases, two-phase flow and condensation, shock waves in the environment and energy, and energy-related processes. The book contains a total of 98 papers by well-known specialists.
The grandson of a Jew, whose Jewish relatives converted to Christianity, whose allies played down his Jewish origins just as fervently as his enemies played them up, V.I. Lenin makes for a fascinating case study of the many complexities associated with 'Jewish question' in Russia.
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
None
Accompanying CD-ROM includes the FORTRAN, C, and MATLAB source code in both Macintosh and Windows formats.
Gas Phase Combustion
None
None