You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book provides an in-depth discussion regarding inorganic ion exchangers for students, teachers, and researchers engaged in conducting research in chemical technology and related areas. Analytical chemists seeking simple and novel means of using easy-to-prepare chromatographic materials will find this book extremely informative. Inorganic Ion Exchangers in Chemical Analysis is unique in its discussion of column and planar chromatographic applications of amorphous synthetic inorganic ion exchangers. The book also covers the historical background of iorganic ion exchangers, their classification and present status, and the analytical aspects of these materials.
Specific ion effects are important in numerous fields of science and technology. They have been discussed for over 100 years, ever since the pioneering work done by Franz Hofmeister and his group in Prague. Over the last decades, hundreds of examples have been published and periodically explanations have been proposed. However, it is only recently that a profound understanding of the basic effects and their reasons could be achieved. Today, we are not far from a general explanation of specific ion effects. This book summarizes the main new ideas that have come up in the last ten years. In this book, the efforts of theoreticians are substantially supported by the experimental results stemming from new and exciting techniques. Both the new theoretical concepts and the experimental landmarks are collected and critically discussed by eminent scientists and well-known specialists in this field. Beyond the rigorous explanations, guidelines are given to non-specialists in order to help them understand the general rules governing specific ion effects in chemistry, biology, physics and engineering.
Ion Correlations at Electrified Soft Matter Interfaces presents an investigation that combines experiments, theory, and computer simulations to demonstrate that the interdependency between ion correlations and other ion interactions in solution can explain the distribution of ions near an electrified liquid/liquid interface. The properties of this interface are exploited to vary the coupling strength of ion-ion correlations from weak to strong while monitoring their influence on ion distributions at the nanometer scale with X-ray reflectivity and on the macroscopic scale with interfacial tension measurements. This thesis demonstrates that a parameter-free density functional theory that inclu...
This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.
Over the last decade, scientific and engineering interests have been shifting from conventional ion mobility spectrometry (IMS) to field asymmetric waveform ion mobility spectrometry (FAIMS). Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS explores this new analytical technology that separates and characterizes ions by the difference between their mobility in gases at high and low electric fields. It also covers the novel topics of higher-order differential IMS and IMS with alignment of dipole direction. The book relates the fundamentals of FAIMS and other nonlinear IMS methods to the physics of gas-phase ion transport. It begins with the basics of i...
The microelectrode technique is today the most widely used method in electrophy siology. Microelectrodes offer a unique approach to measurements of electrical pa rameters and ion activities of single cells. Several important breakthroughs in trans port physiology have arisen from microelectrode studies. Undoubtedly, there is a progressively wide-spread use of conventional and ion-selective microelectrodes. Due to their particular dimension and properties micro electrodes are exclusive ly applied to measurements on living matter. This must have many consequences to my thoughts on experiments with microelectrodes. In this book, my concern is fo cussing on the description of an intracellular me...
Comprehensive guide to an important materials science technique for students and researchers.
Over the past several decades, the theme of supramolecular chemistry (SC) has permeated nearly all aspects of chemical endeavor. Not surprisingly, it has also pervaded the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. In addition, tools for studying aggregation have grown increasingly sophisticated, leading to a greater understanding of what we now recognize as SC phenomena in SX. Volume 21, Supramolecular Aspects of Solvent Extraction identifies how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the direction of SX. With contributions by internationally recognized specialists fr...