You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Problems in decision making and in other areas such as pattern recogni tion, control, structural engineering etc. involve numerous aspects of uncertainty. Additional vagueness is introduced as models become more complex but not necessarily more meaningful by the added details. During the last two decades one has become more and more aware of the fact that not all this uncertainty is of stochastic (random) cha racter and that, therefore, it can not be modelled appropriately by probability theory. This becomes the more obvious the more we want to represent formally human knowledge. As far as uncertain data are concerned, we have neither instru ments nor reasoning at our disposal as well define...
Colleen Hoover brought you the beautiful, unforgettable It Ends With Us - now a major film starring Blake Lively. Now, discover her thriller with a twist that will leave you reeling . . . Verity is a global word-of-mouth hit, with over a million five star reviews from readers. Lowen Ashleigh is a struggling writer on the brink of financial ruin when she accepts the job offer of a lifetime. Jeremy Crawford, husband of bestselling author Verity Crawford, has hired Lowen to complete the remaining books in a successful series his injured wife is unable to finish. Lowen arrives at the Crawford home, ready to sort through years of Verity's notes and outlines, hoping to find enough material to get ...
The purpose of this collection is to guide the non-specialist through the basic theory of various generalizations of topology, starting with clear motivations for their introduction. Structures considered include closure spaces, convergence spaces, proximity spaces, quasi-uniform spaces, merotopic spaces, nearness and filter spaces, semi-uniform convergence spaces, and approach spaces. Each chapter is self-contained and accessible to the graduate student, and focuses on motivations to introduce the generalization of topologies considered, presenting examples where desirable properties are not present in the realm of topologies and the problem is remedied in the more general context. Then, enough material will be covered to prepare the reader for more advanced papers on the topic. While category theory is not the focus of the book, it is a convenient language to study these structures and, while kept as a tool rather than an object of study, will be used throughout the book. For this reason, the book contains an introductory chapter on categorical topology.
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters...
Fuzzy sets were introduced by Zadeh (1965) as a means of representing and manipulating data that was not precise, but rather fuzzy. Fuzzy logic pro vides an inference morphology that enables approximate human reasoning capabilities to be applied to knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to capture the uncertainties associ ated with human cognitive processes, such as thinking and reasoning. The conventional approaches to knowledge representation lack the means for rep resentating the meaning of fuzzy concepts. As a consequence, the approaches based on first order logic and classical probablity theory do not provide an appropriate conceptual framewo...
The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker...
Lectori salutem! The kind reader opens the book that its authors would have liked to read it themselves, but it was not written yet. Then, their only choice was to write this book, to fill a gap in the mathematicalliterature. The idea of convexity has appeared in the human mind since the antiquity and its fertility has led to a huge diversity of notions and of applications. A student intending a thoroughgoing study of convexity has the sensation of swimming into an ocean. It is due to two reasons: the first one is the great number of properties and applications of the classical convexity and second one is the great number of generalisations for various purposes. As a consequence, a tendency ...
Topological spaces are a special case of convergence spaces. This textbook introduces topology within a broader context of convergence theory. The title alludes to advantages of the present approach, which is more gratifying than many traditional ones: you travel more comfortably through mathematical landscapes and you see more.The book is addressed both to those who wish to learn topology and to those who, being already knowledgeable about topology, are curious to review it from a different perspective, which goes well beyond the traditional knowledge.Usual topics of classic courses of set-theoretic topology are treated at an early stage of the book — from a viewpoint of convergence of fi...