You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
In the past few years, knowledge about methods for the numerical solution of two-point boundary value problems has increased significantly. Important theoretical and practical advances have been made in a number or fronts, although they are not adequately described in any tt'xt currently available. With this in mind, we organized an international workshop, devoted solely to this topic. Tht' workshop took place in Vancouver, B.C., Canada, in July 1()"13, 1984. This volume contains the refereed proceedings of the workshop. Contributions to the workshop were in two formats. There were a small number of invited talks (ten of which are presented in this proceedings); the other contributions were ...
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
This volume is an outcome of the EQUADIFF 87 conference in Greece. It addresses a wide spectrum of topics in the theory and applications of differential equations, ordinary, partial, and functional. The book is intended for mathematics and scientists.
None
The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists mad...
The 15th European Conference on Mathematics for Industry was held in the agreeable surroundings of University College London, just 5 minutes walk from the British Museum in the heart of London, over the ?ve warm, sunny days from 30 June to 4 July 2008. Participants from all over the world met with the commonaimofreinforcingthe roleofmathematics asanoverarching resource for industry and business. The conference attracted over 300 participants from 30 countries, most of them participating with either a contributed talk, a minisymposium pres- tation or a plenary lecture. ‘Mathematics in Industry’ was interpreted in its widest sense as can be seen from the range of applications and technique...
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
Selected from papers presented at the 8th Scientific Computation in Electrical Engineering conference in Toulouse in 2010, the contributions to this volume cover every angle of numerically modelling electronic and electrical systems, including computational electromagnetics, circuit theory and simulation and device modelling. On computational electromagnetics, the chapters examine cutting-edge material ranging from low-frequency electrical machine modelling problems to issues in high-frequency scattering. Regarding circuit theory and simulation, the book details the most advanced techniques for modelling networks with many thousands of components. Modelling devices at microscopic levels is covered by a number of fundamental mathematical physics papers, while numerous papers on model order reduction help engineers and systems designers to bring their modelling of industrial-scale systems within the reach of present-day computational power. Complementing these more specific papers, the volume also contains a selection of mathematical methods which can be used in any application domain.