You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A collection of essays by many of the closest co-workers of Raphael Høegh-Krohn.
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had...
Next to the harmonic oscillator and the Coulomb potential the class of two-body models with point interactions is the only one where complete solutions are available. All mathematical and physical quantities can be calculated explicitly which makes this field of research important also for more complicated and realistic models in quantum mechanics. The detailed results allow their implementation in numerical codes to analyse properties of alloys, impurities, crystals and other features in solid state quantum physics. This monograph presents in a systematic way the mathematical approach and unifies results obtained in recent years. The student with a sound background in mathematics will get a deeper understanding of Schrödinger Operators and will see many examples which may eventually be used with profit in courses on quantum mechanics and solid state physics. The book has textbook potential in mathematical physics and is suitable for additional reading in various fields of theoretical quantum physics.
"This monograph presents a detailed study of a class of solvable models in quantum mechanics that describe the motion of a particle in a potential having support at the positions of a discrete (finite or infinite) set of point sources. Both situations–where the strengths of the sources and their locations are precisely known and where these are only known with a given probability distribution–are covered. The authors present a systematic mathematical approach to these models and illustrate its connections with previous heuristic derivations and computations. Results obtained by different methods in disparate contexts are thus unified and a systematic control over approximations to the mo...
This book has been long awaited in the "interacting particle systems" community. Begun by Claude Kipnis before his untimely death, it was completed by Claudio Landim, his most brilliant student and collaborator. It presents the techniques used in the proof of the hydrodynamic behavior of interacting particle systems.
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be...
'Et moi, "'f si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aile':' human race. It has put common sense back Jules Verne where it belongs, 011 the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has...
Let $N\in\mathbb{N}$, $N\geq2$, be given. Motivated by wavelet analysis, this title considers a class of normal representations of the $C DEGREES{\ast}$-algebra $\mathfrak{A}_{N}$ on two unitary generators $U$, $V$ subject to the relation $UVU DEGREES{-1}=V DEGREES{N}$. The representations are in one-to-one correspondence with solutions $h\in L DEGREES{1}\left(\mathbb{T}\right)$, $h\geq0$, to $R\left(h\right)=h$ where $R$ is a certain transfer operator (positivity-preserving) which was studied previously by D. Ruelle. The representations of $\mathfrak{A}_{N}$ may also be viewed as representations of a certain (discrete) $N$-adic $ax+b$ group which was considered recently
Determinism, holism and complexity: three epistemological attitudes that have easily identifiable historical origins and developments. Galileo believed that it was necessary to "prune the impediments" to extract the mathematical essence of physical phenomena, to identify the math ematical structures representing the underlying laws. This Galilean method was the key element in the development of Physics, with its extraordinary successes. Nevertheless the method was later criticized because it led to a view of nature as essentially "simple and orderly", and thus by choosing not to investigate several charac teristics considered as an "impediment", several essential aspects of the phenomenon un...
A compact, sophomore-to-senior-level guide, Dr. Seeley's text introduces Fourier series in the way that Joseph Fourier himself used them: as solutions of the heat equation in a disk. Emphasizing the relationship between physics and mathematics, Dr. Seeley focuses on results of greatest significance to modern readers. Starting with a physical problem, Dr. Seeley sets up and analyzes the mathematical modes, establishes the principal properties, and then proceeds to apply these results and methods to new situations. The chapter on Fourier transforms derives analogs of the results obtained for Fourier series, which the author applies to the analysis of a problem of heat conduction. Numerous computational and theoretical problems appear throughout the text.