You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With contributions by numerous experts
This introduction to the field contains a careful selection of topics and examples without sacrificing scientific strictness. The author guides readers through mathematical modelling, the theoretical treatment of the underlying physical laws and the construction and effective use of numerical procedures to describe the behaviour of the dynamics of physical flow. Both students and experts intending to control or predict the behavior of fluid flows by theoretical and computational fluid dynamics will benefit from the combination of all relevant aspects in one handy volume. The book consists of three main parts: - The design of mathematical models of physical fluid flow; - A theoretical treatment of the equations representing the model, as Navier-Stokes, Euler, and boundary layer equations, models of turbulence, in order to gain qualitative as well as quantitative insights into the processes of flow events; - The construction and effective use of numerical procedures in order to find quantitative descriptions of concrete physical or technical fluid flow situations. This is the first text of its kind to merge all these subjects so thoroughly.
This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.