You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Create scalable machine learning applications to power a modern data-driven business using Spark 2.x About This Book Get to the grips with the latest version of Apache Spark Utilize Spark's machine learning library to implement predictive analytics Leverage Spark's powerful tools to load, analyze, clean, and transform your data Who This Book Is For If you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages. What You Will Learn Get hands-on with the latest version of Spark ML Create your first Spark program with Scala and Python Set up ...
學習熱門的機器學習演算法 本書介紹熱門的機器學習演算法及其實作方式。你將會了解如何在Spark ML這套開發框架之內,實作各種機器學習概念。首先,我們會帶你在單一節點與多重節點的運算叢集上,完成Spark的安裝工作;接著,說明如何執行以Scala和Python語言撰寫的Spark ML程式;然後以幾套資料集為範例,深入探索分群、分類與迴歸;最後,利用Spark ML來處理文字資料。 打造可以應用於工作中的機器學習程式 弄懂概念之後,便可運用來實作演算法,可能是從頭開始,或是將既有的系統轉移到這個新平台,像是從Mahout或Scikit...
Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark...
Im vorliegenden Buch soll eine praxisorientierte Einführung und ein aktueller Überblick darüber gegeben werden, was Data-Science und der Beruf Data-Scientist umfassen. Nach 4 Jahren seit Erscheinen der zweiten Auflage wurde die dritte Auflage notwendig, da sich Data-Science als Thema und vor allem die dazugehörende Softwaretechnologie weiterentwickelt. Spätestens mit der Veröffentlichung von ChatGPT ist das Thema künstliche Intelligenz in aller Munde und eine Einordnung von Data- Science, Machine Learning und Artificial Intelligence scheint dringend notwendig. Das Buch enthält neben einer Übersicht über Theorie und Praxis der Daten-Analyse nun auch Code-Beispiele in Python bzw. SQL und Cheat-Sheets zu ChatGPT und GenAI Tools.
Das Thema Data-Science wird häufig diskutiert. Seit der ersten Auflage dieses Buches im Jahr 2017 hat sich an diesem Trend wenig verändert. Data-Scientisten (m/w/d) erfahren eine steigende Nachfrage auf dem Job-Markt, da immer mehr Unternehmen ihre Analytics-Abteilungen auf- bzw. ausbauen und hierfür entsprechende Mitarbeiter suchen. Hier stellt sich die Frage, worin eigentlich der Tätigkeitsbereich eines Data-Scientisten besteht. Das Aufgabenfeld ist nicht eindeutig definiert und reicht über künstliche Intelligenz, Machine-Learning, Data-Mining, Python-Programmierung bis zu Big Data. Im vorliegenden Buch soll eine praxisorientierte Einführung und ein aktueller Überblick darüber gegeben werden, was Data-Science und der Beruf Data-Scientist umfassen.
Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python program...
A practical guide to testing your network's security with Kali Linux, the preferred choice of penetration testers and hackers. About This Book Employ advanced pentesting techniques with Kali Linux to build highly-secured systems Get to grips with various stealth techniques to remain undetected and defeat the latest defenses and follow proven approaches Select and configure the most effective tools from Kali Linux to test network security and prepare your business against malicious threats and save costs Who This Book Is For Penetration Testers, IT professional or a security consultant who wants to maximize the success of your network testing using some of the advanced features of Kali Linux,...
Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be...
Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning...
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow