You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A study of recent developments in molecular biology and biotechnology, including enzyme technology, genetics and various applications, for example in fermentation technology, protein technology, genetic engineering and product recovery.
Advances in molecular biology and biotechnology are increasing at a rapid pace, both in the development of new methodologies and in their practical applications. This popular textbook has been revised and updated to provide an overview of this exciting area of bioscience and to reflect a number of the key developments driving this expansion. Chapters on the basic methods of key technologies such as nucleic acid analysis and bioinformatics are presented, in addition to genomics and proteomics, which highlight the impact of molecular biology and biotechnology. New chapters on important and emerging methods have been introduced such as gene editing, next generation sequencing, nanobiotechnology...
Molecular Forensics offers a comprehensive coverage of the increasingly important role that molecular analysis plays within forensic science. Starting with a broad introduction of modern forensic molecular technologies, the text covers key issues from the initial scenes of crime sampling to the use of evidential material in the prosecution of legal cases. The book also explores the questions raised by the growing debate on the applications of national DNA databases and the resulting challenges of developing, maintaining and curating such vast data structures. The broader range of applications to non-human cases is also discussed, as are the statistical pitfalls of using so-called unique data...
Recent advances in the biosciences have led to a range of powerful new technologies, particularly nucleic acid, protein and cell-based methodologies. The most recent insights have come to affect how scientists investigate and define cellular processes at the molecular level. This book expands upon the techniques included in the first edition, providing theory, outlines of practical procedures, and applications for a range of techniques. Written by a well-established panel of research scientists, the book provides an up-to-date collection of methods used regularly in the authors’ own research programs.
Recent advances in the biosciences have led to a range of powerful new technologies, particularly nucleic acid, protein and cell-based methodologies. The most recent insights have come to affect how scientists investigate and define cellular processes at the molecular level. This book expands upon the techniques included in the first edition, providing theory, outlines of practical procedures, and applications for a range of techniques. Written by a well-established panel of research scientists, the book provides an up-to-date collection of methods used regularly in the authors’ own research programs.
Molecular and Cellular Therapeutics aims to bring together key developments in the areas of molecular diagnostics, therapeutics and drug discovery. The book covers topics including diagnostics, therapeutics, model systems, clinical trials and drug discovery. The developing approaches to molecular and cellular therapies, diagnostics and drug discovery are presented in the context of the pathologies they are devised to treat.
A major update of a best-selling textbook that introduces students to the key experimental and analytical techniques underpinning life science research.
1Bimal D. Theophilus and Ralph Rapley provide biological and clinical investigators with a comprehensive collection of new, recent, and updated PCR-based screening methods suitable for detecting the presence of both known and novel mutations. The methods cover point mutations (e.g., ASO-PCR, SSCP, DGGE, chemical cleavage), deletions (multiplex PCR, FISH, blotting), non-sense mutations (PTT), and more. The new and exciting techniques of DNA array analysis, along with such recently developed experimental methods as conformation-sensitive gel electrophoresis, are also included. Each chapter explains the basic theory behind the technique and provides valuable notes essential for its successful execution.
Now fully updated and considerably expanded, Glycoanalysis Protocols, 2nd ed., makes available to all protein scientists, and particularly those working with today's pharmaceuticals, the most advanced and reproducible glycoanalysis techniques currently in use. Developed by highly experienced carbohydrate chemists, biochemists, and physical chemists, these detailed, up-to-date, and proven analytical techniques cover the areas of glycoprotein macromolecular structural analysis, oligosaccharide profiling, lipid conjugate characterization, microorganism structure determination, and proteoglycan function. Special attention has been given to advanced analytical techniques in biotechnology during the production of recombinant glycoproteins and other therapeutics. Hailed as "indispensable" in its first edition, Glycoanalysis Protocols, 2nd ed., continues with vital, time-tested techniques addressing the needs of both biomedical researchers and protein macromolecular structural chemists. It will well serve all those starting work on the analysis of glycoproteins, as well as more experienced investigators seeking to augment their expertise.
This state-of-the-art collection of easily reproducible methods includes all of the major techniques of DNA analysis currently used in forensic identity testing. The methods include the recovery of DNA from a large range of sample types, analysis of DNA as single and multi-locus VNTR probes, PCR amplification of STR and other loci, and mitochondrial sequencing. The expert scientists writing here -- many from laboratories around the world -- also discuss how to interpret the results in cases of unknown identity and disputed parentage.-- Covers all steps from extraction of human DNA through to analysis and interpretation-- Takes advantage of new methodologies such as capillary electrophoresis-- Clear step-by-step instructions ensure unfailing reproducibility.