You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The fields of intelligent systems and sustainability have been gaining momentum in the research community. They have drawn interest in such research fields as computer science, information technology, electrical engineering, and other associated engineering disciples. The promise of intelligent systems applied to sustainability is becoming a reality due to the recent advancements in the Internet of Things (IoT), Artificial Intelligence, Big Data, blockchain, deep learning, and machine learning. The emergence of intelligent systems has given rise to a wide range of techniques and algorithms using an ensemble approach to implement novel solutions for complex problems associated with sustainabi...
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is impo...
This book presents recent work on healthcare management and engineering using artificial intelligence and data mining techniques. Specific topics covered in the contributed chapters include predictive mining, decision support, capacity management, patient flow optimization, image compression, data clustering, and feature selection. The content will be valuable for researchers and postgraduate students in computer science, information technology, industrial engineering, and applied mathematics.
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
Business and IT organizations are currently embracing new strategically sound concepts in order to be more customer-centric, competitive, and cognitive in their daily operations. While useful, the various software tools, pioneering technologies, as well as their unique contributions largely go unused due to the lack of information provided on their special characteristics. Novel Practices and Trends in Grid and Cloud Computing is a collection of innovative research on the key concerns of cloud computing and how they are being addressed, as well as the various technologies and tools empowering cloud theory to be participative, penetrative, pervasive, and persuasive. While highlighting topics including cyber security, smart technology, and artificial intelligence, this book is ideally designed for students, researchers, and business managers on the lookout for innovative IT solutions for all the business automation software and improvisations of computational technologies.
This book discusses various aspects of the multi-cloud paradigm. The initial portion of the book focuses on the motivations for the industry to embrace a multi-cloud option and the distinct business, technology, and user cases of multi-cloud implementations. The middle part of the book explains the challenges of setting up and sustaining multi-cloud environments. The latter portion focuses on the next-generation technologies and tools along with multi-cloud platforms, processes, patterns, and practices. The final segment of the book is dedicated for cloud brokerage systems. The various traits and tenets of cloud brokerage services especially for accomplishing cloud intermediation, integration, orchestration, governance, security, management, configuration, etc. are explained in detail. The book also clearly articulates how to have intelligent brokers.
This book is an introduction to social data analytics along with its challenges and opportunities in the age of Big Data and Artificial Intelligence. It focuses primarily on concepts, techniques and methods for organizing, curating, processing, analyzing, and visualizing big social data: from text to image and video analytics. It provides novel techniques in storytelling with social data to facilitate the knowledge and fact discovery. The book covers a large body of knowledge that will help practitioners and researchers in understanding the underlying concepts, problems, methods, tools and techniques involved in modern social data analytics. It also provides real-world applications of social...
Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offer...