Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Lectures in Geometric Combinatorics
  • Language: en
  • Pages: 156

Lectures in Geometric Combinatorics

This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Semidefinite Optimization and Convex Algebraic Geometry
  • Language: en
  • Pages: 487

Semidefinite Optimization and Convex Algebraic Geometry

  • Type: Book
  • -
  • Published: 2013-03-21
  • -
  • Publisher: SIAM

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Geometries
  • Language: en
  • Pages: 322

Geometries

The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivere...

Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions
  • Language: en
  • Pages: 118

Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions

An operator C on a Hilbert space H dilates to an operator T on a Hilbert space K if there is an isometry V:H→K such that C=V∗TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor ϑ(d), expressed as a ratio of Γ functions for d even, of all d×d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.

Algebraic and Geometric Combinatorics
  • Language: en
  • Pages: 342

Algebraic and Geometric Combinatorics

This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.

Computability Theory
  • Language: en
  • Pages: 218

Computability Theory

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting prob...

Coding Theory and Applications
  • Language: en
  • Pages: 347

Coding Theory and Applications

  • Type: Book
  • -
  • Published: 2015-07-24
  • -
  • Publisher: Springer

The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.

Algebraic and Geometric Ideas in the Theory of Discrete Optimization
  • Language: en
  • Pages: 320

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

  • Type: Book
  • -
  • Published: 2013-01-31
  • -
  • Publisher: SIAM

In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.

Introduction to Tropical Geometry
  • Language: en
  • Pages: 363

Introduction to Tropical Geometry

Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied m...

Frames for Undergraduates
  • Language: en
  • Pages: 314

Frames for Undergraduates

"The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students."--BOOK JACKET.