You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Alzheimer's disease is the most common form of senile dementia, affecting more than 24 million people worldwide. It is characterised pathologically by abnormally high levels of brain lesions in dead and dying neurons, and by elevated numbers of amyloid deposits in the walls of cerebral blood vessels. This book provides a panoramic view across recent in vitro and in vivo studies along with state-of-the-art computer simulations, designed to increase the readers' understanding of oligomerisation and fibril formation.
Alzheimer's disease is the most common form of senile dementia, affecting more than 24 million people worldwide. It is characterised pathologically by abnormally high levels of neurofibrillary tangles resulting from the accumulation of tau protein in dead and dying neurons, and by elevated numbers of senile plaques in the cortex and hippocampus of the brain. The major component of senile plaques is a small protein of 39-43 amino acids called amyloid-β (Aβ). Thus far, no treatment has been shown to slow the progression of sporadic and familial Alzheimer's disease.A large body of evidence points, however, to the early Aβ-formed oligomers as the primary toxic species in Alzheimer's disease. ...
Computational modeling is emerging as a powerful new approach to study and manipulate biological systems. Multiple methods have been developed to model, visualize, and rationally alter systems at various length scales, starting from molecular modeling and design at atomic resolution to cellular pathways modeling and analysis. Higher time and length scale processes, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. This book provides an overview of the established computational methods used for modeling biologically and medically relevant systems.
Models of biomolecular structure and dynamics are often obtained by combining simulation or prediction approaches (e.g., comparative modeling, Molecular Dynamics (MD) simulations, Normal Mode Analysis (NMA), etc.) with experimental approaches (e.g., Nuclear Magnetic Resonance (NMR), X-ray crystallography, Small-Angle X-ray Scattering (SAXS), Electron Microscopy (EM), etc.). Such hybrid modeling extends the capabilities of experimental techniques, by enriching structural information and facilitating dynamics studies of biomolecules. This eBook contains articles on methodological developments, applications, and challenges of hybrid biomolecular modeling that have been collected in the framework of the Frontiers Research Topic entitled “Hybrid Biomolecular Modeling”.
None
None
None
This volume explores the recent advancements in biomolecular simulations of proteins, small molecules, and nucleic acids, with a primary focus on classical molecular dynamics (MD) simulations at atomistic, coarse-grained, and quantum/ab-initio levels. The chapters in this book are divided into four parts: Part One looks at recent techniques used in the development of physic-chemical models of proteins, small molecules, nucleic acids, and lipids; Part Two discusses enhanced sampling and free-energy calculations; Part Three talks about integrative computational and experimental approaches for biomolecular simulations; and Part Four focuses on analyzing, visualizing, and comparing biomolecular ...