You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems.
The problem of verifying predictions of fire behavior, primarily rate of spread, is discussed in terms of the fire situation for which predictions are made, and the type of fire where data are to be collected. Procedures for collecting data and performing analysis are presented for both readily accessible fires where data should be complete, and for inaccessible fires where data are likely to be incomplete. The material is prepared for use by field units, with no requirements for special equipment or computers. Procedures for selecting the most representative fuel model, for overall evaluation of prediction capability, and for developing calibration coefficients to improve future predictions are presented. Illustrated examples from several fires are included. The material is a companion publication to the fire prediction manual titled, 'INT-GTR-143: How to predict the spread and intensity of forest and range fire' by R. C. Rothermel.
Fuel beds of ponderosa pine needles and white pine needles were burned under controlled environmental conditions to determine the effects of fuel moisture and windspeed upon the rate of fire spread. Empirical formulas are presented to show the effect of these parameters. A discussion of rate of spread and some simple experiments show how fuel may be preheated before the fire reaches the fuel. The interrelationship between unit energy release rate and rate of spread produces a fire characteristics curve. Diffusion flame analysis shows good agreement when working with 1/2-inch stick fires.
A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.
Describes a model for predicting moisture content of fine fuels for use with the BEHAVE fire behavior and fuel modeling system. The model is intended to meet the need for more accurate predictions of fine fuel moisture, particularly in northern conifer stands and on days following rain. The model is based on the Canadian Fine Fuel Moisture Code (FFMC), modified to account for solar heating of fuels and to predict diurnal trends in fine fuel moisture. The model may be initiated without extensive data on prior weather. When compared to the FFMC and the fire behavior officers' procedures, the new model gave consistently better predictions over the complete range of fuel conditions.