Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction To Chaotic Dynamical Systems
  • Language: en
  • Pages: 360

An Introduction To Chaotic Dynamical Systems

  • Type: Book
  • -
  • Published: 2018-03-09
  • -
  • Publisher: CRC Press

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

A First Course In Chaotic Dynamical Systems
  • Language: en
  • Pages: 231

A First Course In Chaotic Dynamical Systems

  • Type: Book
  • -
  • Published: 1992-10-21
  • -
  • Publisher: Hachette UK

A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented.Chaotic Dynamical Systems Software, Labs 1–6 is a supplementary laboratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems, it leads to a rich understanding of this emerging field.

Differential Equations, Dynamical Systems, and an Introduction to Chaos
  • Language: en
  • Pages: 433

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Differential Equations
  • Language: en

Differential Equations

Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems focus emphasizes predicting the long-term behavior of these recurring models. Users will discover how to identify and harness the mathematics they will use in their careers, and apply it effectively outside the classroom. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Chaos and Fractals: The Mathematics Behind the Computer Graphics
  • Language: en
  • Pages: 176

Chaos and Fractals: The Mathematics Behind the Computer Graphics

The terms chaos and fractals have received widespread attention in recent years. The alluring computer graphics images associated with these terms have heightened interest among scientists in these ideas. This volume contains the introductory survey lectures delivered in the American Mathematical Society Short Course, Chaos and Fractals: The Mathematics Behind the Computer Graphics, on August 6-7, 1988, given in conjunction with the AMS Centennial Meeting in Providence, Rhode Island. In his overview, Robert L. Devaney introduces such key topics as hyperbolicity, the period doubling route to chaos, chaotic dynamics, symbolic dynamics and the horseshoe, and the appearance of fractals as the chaotic set for a dynamical system. Linda Keen and Bodil Branner discuss the Mandelbrot set and Julia sets associated to the complex quadratic family z -> z2 + c. Kathleen T. Alligood, James A. Yorke, and Philip J. Holmes discuss some of these topics in higher dimensional settings, including the Smale horseshoe and strange attractors. Jenny Harrison and Michael F. Barnsley give an overview of fractal geometry and its applications. -- from dust jacket.

The Science of Fractal Images
  • Language: en
  • Pages: 328

The Science of Fractal Images

This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo rithms are not introduced and discussed in mathematical rigor we have made a serious at...

Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby
  • Language: en
  • Pages: 336

Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby

This volume contains the proceedings of three conferences in Ergodic Theory and Symbolic Dynamics: the Oxtoby Centennial Conference, held from October 30–31, 2010, at Bryn Mawr College; the Williams Ergodic Theory Conference, held from July 27–29, 2012, at Williams College; and the AMS Special Session on Ergodic Theory and Symbolic Dynamics, held from January 17–18, 2014, in Baltimore, MD. This volume contains articles covering a variety of topics in measurable, symbolic and complex dynamics. It also includes a survey article on the life and work of John Oxtoby, providing a source of information about the many ways Oxtoby's work influenced mathematical thought in this and other fields.

Mastering Differential Equations
  • Language: en
  • Pages: 530

Mastering Differential Equations

  • Type: Book
  • -
  • Published: 2011
  • -
  • Publisher: Unknown

In this course, Boston University Professor Robert L. Devaney presents an introduction to differential equations.

Chaos, Fractals, and Dynamics
  • Language: en
  • Pages: 212

Chaos, Fractals, and Dynamics

Introduces the mathematical topics of chaos, fractals, and dynamics using a combination of hands-on computer experimentation and precalculas mathmetics. A series of experiments produce fascinating computer graphics images of Julia sets, the Mandelbrot set, and fractals. The basic ideas of dynamics--chaos, iteration, and stability--are illustrated via computer projects.

Differential Equations, Dynamical Systems, and Linear Algebra
  • Language: en
  • Pages: 373

Differential Equations, Dynamical Systems, and Linear Algebra

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.