You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since 1941, the 2nd Marine Division has written a record of unparalleled success through their courage, spirit, dedication and above all, their sacrifice. Volume II continues the history of the 2nd Marine Division, written by Art Sharp, former Follow Me"" editor. Displays the triumphs they shared through a written history with hundreds of photographs. Features Second Marine Division Association history and information, past presidents, past reunions, Second Marine Division Lineage, Unit Citation, Medal of Honor recipients, Distinguished Service Award recipients, special feature stories written by Second Marine Division members, biographies and an association roster.""
None
None
In this paper we provide a unified way of looking at the apparently sporadic Weyl groups connected with the classical geometry of surfaces, namely those with 1) the rational double points, 2) the Picard groups of Del Pezzo surfaces, 3) the Kodaira-type degenerations of elliptic curves, and 4) the Picard-Lefschetz reflections of [italic]K3-surfaces, by putting them together into the picture of 3-dimensional birational geometry in the realm of the recently established Minimal Model Theory for 3-folds.
We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts...
At first, this volume was intended to be an investigation of symbolic blow-up rings for prime ideals defining curve singularities. The motivation for that has come from the recent 3-dimensional counterexamples to Cowsik's question, given by the authors and Watanabe: it has to be helpful, for further researches on Cowsik's question and a related problem of Kronecker, to generalize their methods to those of a higher dimension. However, while the study was progressing, it proved apparent that the framework of Part I still works, not only for the rather special symbolic blow-up rings but also in the study of Rees algebras R(F) associated to general filtrations F = {F[subscript]n} [subscript]n [subscript][set membership symbol][subscript bold]Z of ideals. This observation is closely explained in Part II of this volume, as a general ring-theory of Rees algebras R(F). We are glad if this volume will be a new starting point for the further researchers on Rees algebras R(F) and their associated graded rings G(F).
This book is intended for graduate students and researchers interested in the mathematical physics and PDE.