You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The roots of the project which culminates with the writing of this book can be traced to the work on logic synthesis started in 1979 at the IBM Watson Research Center and at University of California, Berkeley. During the preliminary phases of these projects, the impor tance of logic minimization for the synthesis of area and performance effective circuits clearly emerged. In 1980, Richard Newton stirred our interest by pointing out new heuristic algorithms for two-level logic minimization and the potential for improving upon existing approaches. In the summer of 1981, the authors organized and participated in a seminar on logic manipulation at IBM Research. One of the goals of the seminar wa...
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use...
High-Performance Digital VLSI Circuit Design is the first book devoted entirely to the design of digital high-performance VLSI circuits. CMOS, BiCMOS and bipolar ciruits are covered in depth, including state-of-the-art circuit structures. Recent advances in both the computer and telecommunications industries demand high-performance VLSI digital circuits. Digital processing of signals demands high-speed circuit techniques for the GHz range. The design of such circuits represents a great challenge; one that is amplified when the power supply is scaled down to 3.3 V. Moreover, the requirements of low-power/high-performance circuits adds an extra dimension to the design of such circuits. High-Pe...
Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. The editors and authors of this handbook are among the world's leading researchers in this domain, and the 32 contributed chapters present a thorough view of the origin, theory, and application of model checking. In particular, the editors classify the advances in this domain and the chapters of the handbook in terms of two recurrent themes that have driven much of the research agenda: the algorithmic challenge, that is, designing model-checking algorithms that scale to real-life problems; and the modeling challenge, that is, extending the formalism beyond Kripke structures and temporal logic. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
A collection of papers written by prominent experts that examine a variety of advanced topics related to Boolean functions and expressions.
Concurrency is an integral part of everyday life. The concept is so ingrained in our existence that we benefit from it without realizing. When faced with a taxing problem, we automatically involve others to solve it more easily. Such concurrent solutions to a complex problem may, however, not be quite straightforward and communication becomes crucial to ensure the successful solution of the problem.
The biannual Formal Methods in Computer Aided Design conference (FMCAD 2000)is the third in a series of conferences under that title devoted to the use of discrete mathematical methods for the analysis of computer hardware and so- ware. The work reported in this book describes the use of modeling languages and their associated automated analysis tools to specify and verify computing systems. Functional veric ation has become one of the principal costs in a modern computer design e ort. In addition,verica tion of circuit models, timing,power, etc., requires even more eo rt. FMCAD provides a venue for academic and - dustrial researchers and practitioners to share their ideas and experiences of...
This book constitutes the refereed proceedings of the 13th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods, CHARME 2005, held in Saarbrücken, Germany, in October 2005. The 21 revised full papers and 18 short papers presented together with 2 invited talks and one tutorial were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on functional approaches to design description, game solving approaches, abstraction, algorithms and techniques for speeding (DD-based) verification, real time and LTL model checking, evaluation of SAT-based tools, model reduction, and verification of memory hierarchy mechanisms.