You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the competitive edge these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to advance their careers. These books expand the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses. As an investment executive and authoritative instructor, Robert R. Reitano presents ...
This is the first in a set of 10 books written for professionals in quantitative finance. These books fill the gap between informal mathematical developments found in introductory materials, and more advanced treatments that summarize without formally developing the important foundational results professionals need. Book I in the Foundations in Quantitative Finance Series develops topics in measure spaces and measurable functions and lays the foundation for subsequent volumes. Lebesgue and then Borel measure theory are developed on R, motivating the general extension theory of measure spaces that follows. This general theory is applied to finite product measure spaces, Borel measures on Rn, ...
An introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote. This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. It emphasizes the thought process and mathematical approach taken to develop each...
Every financial professional wants and needs an advantage. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not—and that is the advantage these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books presents the advanced mathematics finance professionals need to advantage their careers, these books present the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses. As a high-level industry executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered in nearly three decades working in the financial industry and two decades teaching in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the first book in the set, Foundations of Quantitative Finance Book I: Measure Spaces and Measurable Functions.
Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not--and that is the competitive edge these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to advance their careers. These books expand the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses. As an investment executive and authoritative instructor, Robert R. Reitano presents t...
Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not--and that is the competitive edge these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to advance their careers. These books expand the theory most do not learn in graduate finance programs, or in most financial mathematics undergraduate and graduate courses. As an investment executive and authoritative instructor, Robert R. Reitano presents t...
"Every finance professional wants and needs a competitive edge. A firm foundation in advanced mathematics can translate into dramatic advantages to professionals willing to obtain it. Many are not-and that is the competitive edge these books offer the astute reader. Published under the collective title of Foundations of Quantitative Finance, this set of ten books develops the advanced topics in mathematics that finance professionals need to improve their careers. These books develop the theory most do not learn in graduate finance programs, or in most finance mathematics undergraduate and graduate courses. As an investment executive and authoritative instructor, Robert R. Reitano presents the mathematical theories he encountered and used in nearly three decades in the financial services industry and two decades in academia where he taught in highly respected graduate programs. Readers should be quantitatively literate and familiar with the developments in the first book in the set. While the set offers a continuous progression through these topics, each title can also be studied independently"--
"This series aims to introduce and develop in some detail a number of the foundational theories underlying quantitative finance and to offer a precise set of topics to promote timely learning. The included topics have been curated from a vast mathematics and finance literature to support applications in quantitative finance"--
This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data...