You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A systematic and integrated approach to Cantor Sets and their applications to various branches of mathematics The Elements of Cantor Sets: With Applications features a thorough introduction to Cantor Sets and applies these sets as a bridge between real analysis, probability, topology, and algebra. The author fills a gap in the current literature by providing an introductory and integrated perspective, thereby preparing readers for further study and building a deeper understanding of analysis, topology, set theory, number theory, and algebra. The Elements of Cantor Sets provides coverage of: Basic definitions and background theorems as well as comprehensive mathematical details A biography of...
The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects now returns with a brand-new compilation of fascinating problems and solutions in recreational mathematics. This latest volume gathers together the top experts in recreational math and presents a compelling look at board games, card games, dice, toys, com...
MAA guides series numbering on title page appears as # 49. It should read # 9.
Calculus problems solved by elementary geometrical methods --- page 4 of cover.
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
The Association for Women in Mathematics (AWM), the oldest organization in the world for women in mathematics, had its fiftieth anniversary in 2021. This collection of refereed articles, illustrated by color photographs, reflects on women in mathematics and the organization as a whole. Some articles focus on the situation for women in mathematics at various times and places, including other countries. Others describe how individuals have shaped AWM, and, in turn, how the organization has impacted individuals as well as the broader mathematical community. Some are personal stories about careers in mathematics. Fifty Years of Women in Mathematics: Reminiscences, History, and Visions for the Fu...
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, ...
Varieties of Integration explores the critical contributions by Riemann, Darboux, Lebesgue, Henstock, Kurzweil, and Stieltjes to the theory of integration and provides a glimpse of more recent variations of the integral such as those involving operator-valued measures. By the first year of graduate school, a young mathematician will have encountered at least three separate definitions of the integral. The associated integrals are typically studied in isolation with little attention paid to the relationships between them or to the historical issues that motivated their definitions. Varieties of Integration redresses this situation by introducing the Riemann, Darboux, Lebesgue, and gauge integrals in a single volume using a common set of examples. This approach allows the reader to see how the definitions influence proof techniques and computational strategies. Then the properties of the integrals are compared in three major areas: the class of integrable functions, the convergence properties of the integral, and the best form of the Fundamental Theorems of Calculus.
None