You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of proceeding of International Conference on Material Engineering and Mechanical Engineering [MEME2015] is to provide a platform for researchers, engineers, and academicians, as well as industrial professionals, to present their research results and applications developed for Material Engineering and Mechanical Engineering. It provides an opportunities for the delegates to exchange new ideas and application experiences, to enhance business or research relations and to find global partners for future collaboration. The object is to strengthen national academic exchanges and cooperation in the field, promote the rapid development of machinery, materials science and engineering application, effectively improve China's machinery, materials science and engineering applications in the field of academic status and international influence.
Suitable as either a student text or professional reference, Lightwave Engineering addresses the behavior of electromagnetic waves and the propagation of light, which forms the basis of the wide-ranging field of optoelectronics. Divided into two parts, the book first gives a comprehensive introduction to lightwave engineering using plane wave and then offers an in-depth analysis of lightwave propagation in terms of electromagnetic theory. Using the language of mathematics to explain natural phenomena, the book includes numerous illustrative figures that help readers develop an intuitive understanding of light propagation. It also provides helpful equations and outlines their exact derivation...
Speckle study constitutes a multidisciplinary area with inherent complexities. In order to conquer challenges such as the variability of samples and sensitive measurements, researchers must develop a theoretical and statistical understanding of both biological and non-biological metrology using dynamic speckle laser. Dynamic Laser Speckle and Applications discusses the main methodologies used to analyze biospeckle phenomena with a strong focus on experimentation. After establishing a theoretical background in both speckle and biospeckle, the book presents the main methodologies for statistical and image analysis. It then deals with the concept of frequency decomposition before moving on to a discussion of fuzzy methods to treat dynamic speckle data. The book dedicates two sections to applications, including agricultural approaches. Additional features include photo images of experiments and software to aid in easy start-up of dynamic speckle usage. A systematic approach to new dynamic speckle laser phenomena, this book provides the physical theory and statistical background needed to analyze images formed by laser illumination in biological and non-biological samples.
The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also details recent developmental trends, with a focus on basic optical properties of material. Key topics inc...
This text examines a variety of spectral computational techniques— including k-space theory, Floquet theory and beam propagation— that are used to analyze electromagnetic and optical problems. The authors tie together different applications in EM and optics in which the state variable method is used. Emphasizing the analysis of planar diffraction gratings using rigorous coupled wave analysis, the book presents many cases that are analyzed using a full-field vector approach to solve Maxwell’s equations in anisotropic media where a standard wave equation approach is intractable.
From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater scanning and laser scanning in CTP As laser costs come down, and power and availability increase, t...
Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections. The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emp...
Assembling an international team of experts, this book reports on the progress in the rapidly growing field of monolithic micro- and nanoresonators. The book opens with a chapter on photonic crystal-based resonators (nanocavities). It goes on to describe resonators in which the closed trajectories of light are supported by any variety of total internal reflection in curved and polygonal transparent dielectric structures. The book also covers distributed feedback microresonators for slow light, controllable dispersion, and enhanced nonlinearity. A portion of coverage is dedicated to the unique properties of resonators, which are extremely efficient tools when conducting multiple applications.
New chapters and updates highlight the second edition of Laser Safety: Tools and Training. This text provides background information relating to lasers and laser safety, and examines the components of laser work and laser safety from a different perspective. Written by a working laser safety officer, the book considers ways to keep users, as well as those around them, safe. The author encourages readers to think beyond protective eyewear. As it relates to safety, he determines that if eyewear is required, then the laser system is not ideal. This book factors in optics, the vibration elements of the optical table, the power meter, and user training, elements that are not commonly considered i...
The current rapid and complex advancement applications of electromagnetic (EM) and optical systems calls for a much needed update on the computational methods currently in use. Completely revised and reflecting ten years of develoments, this second edition of the bestselling Computational Methods for Electromagnetic and Optical Systems provides the