You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. - Presents surveys of current topics in this rapidly developing field - Features detailed reviews written by leading international researchers - Focuses on the theory of heavy ion physics in medicine
This volume contains contributions covering a wide range of subjects in the area of photonic, electronic and atomic collisions. These include the collisions of heavy particles and electrons with atoms, molecules and clusters; the coherent control of reaction dynamics using lasers and electromagnetic fields with molecules, clusters and liquids; recent experimental progress in the synthesis of antihydrogen; the interaction of solar winds with cometary atmospheres, and the physical interpretation of reactions in biological systems./a
Electron EM reviews the theoretical and experimental work of the last 30 years on continuous electron emission in energetic ion-atom collisions. High incident energies for which the projectile is faster than the mean orbital velocity of the active electron are considered. Emphasis is placed on the interpretation of ionization mechanisms. They are interpreted in terms of Coulomb centers associated with the projectile and target nuclear fields which strongly interact with the outgoing electron. General properties of the two-center electron emission are analyzed. Particular attention is given to screening effects. A brief overview of multiple ionization processes is also presented. The survey concludes with a complete compilation of experimental studies of ionization cross sections.
This book comprises selected peer-reviewed papers presented at the 7th Topical Conference of the Indian Society of Atomic and Molecular Physics, jointly held at IISER Tirupati and IIT Tirupati, India. The contributions address current topics of interest in atomic and molecular physics, both from the theoretical and experimental perspective. The major focus areas include quantum collisions, spectroscopy of atomic and molecular clusters, photoionization, Wigner time delay in collisions, laser cooling, Bose-Einstein condensates, atomic clocks, quantum computing, and trapping and manipulation of quantum systems. The book also discusses emerging topics such as ultrafast quantum processes including those at the attosecond time-scale. This book will prove to be a valuable reference for students and researchers working in the field of atomic and molecular physics.
Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can indu...
Physics of Ionised Gases
The proceedings contain lectures and contributed papers presented at the Latin American School of Physics in Caxambu, Brazil. Topics are related to a review of collision processes, excitation and ionization of molecules, ion formation by electron impact, mass and energy spectroscopy in collision reactions, desorption induced by ion and electron beams, and principles and applications of synchrotron radiation. The major theme of the school was “Current methods in collision processes.”