You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
Optical microscopy is developing into nanoscopy and multimodal microscopy the better to decipher the functioning mechanisms in living systems, and investigating biological specimens at molecular level using fluorescence as a mechanism of contrast. Results have demonstrated the potential to provide information at the Angstrom level. Other optical methods now offer more in terms of spatial and temporal resolution, making it possible to study the delicate and complex relationship between structure and function in cells. Modern optical microscopes also use the decisive advantage provided by artificial intelligence algorithms. All in all, a rapidly changing field with an increasing number of ques...
This Special Issue compiles 11 scientific works that were presented during the International Symposium on Thermal Effects in Gas Flow in Microscale, ISTEGIM 2019, held in Ettlingen, Germany, in October 2019. This symposium was organized in the framework of the MIGRATE Network, an H2020 Marie Skłodowska-Curie European Training Network that ran from November 2015 to October 2019 (www.migrate2015.eu). MIGRATE intends to address some of the current challenges in innovation that face the European industry with regard to heat and mass transfer in gas-based microscale processes. The papers collected in this book focus on fundamental issues that are encountered in microfluidic systems involving gas...
Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems. With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different ...
Stories behind essential microfluidic devices, from the inkjet printer to DNA sequencing chip. Hidden from view, microfluidics underlies a variety of devices that are essential to our lives, from inkjet printers to glucometers for the monitoring of diabetes. Microfluidics—which refers to the technology of miniature fluidic devices and the study of fluids at submillimeter levels—is invisible to most of us because it is hidden beneath ingenious user interfaces. In this book, Albert Folch, a leading researcher in microfluidics, describes the development and use of key microfluidic devices. He explains not only the technology but also the efforts, teams, places, and circumstances that enable...
The last century has been characterized by the development of information theory and the consequent transformative impact of new technologies on societies around the world. It seems likely that the tremendous progress in nanoscience – the ability to manipulate microscopic systems at the level of a single atom – and the emergence of quantum information science, will be the key components of the next revolution; that of the new quantum technologies. Indeed, the ability to manipulate and control quantum systems has already found a variety of potential applications, ranging from the development of molecular nanoscale machines which exploit quantum coherence for their functioning, to metrolog...
We are now entering the third decade of the 21st century, and, especially in the last years, the achievements made by scientists have been exceptional, leading to major advancements in the rapidly growing fields of bioengineering and biotechnology. This annual collection, which highlights article submissions from our Editorial Board members, looks to explore new insights, novel developments, current challenges, latest discoveries, recent advances, and future perspectives in the field of Nanobiotechnology. The Research Topic solicits brief, forward-looking contributions that describe the state of the art, outlining recent developments and major accomplishments that have been achieved and that...
This book is open access under a CC BY 4.0 license.This book presents results relevant in the manufacturing research field, that are mainly aimed at closing the gap between the academic investigation and the industrial application, in collaboration with manufacturing companies. Several hardware and software prototypes represent the key outcome of the scientific contributions that can be grouped into five main areas, representing different perspectives of the factory domain:1) Evolutionary and reconfigurable factories to cope with dynamic production contexts characterized by evolving demand and technologies, products and processes.2) Factories for sustainable production, asking for energy eff...
This book is a printed edition of the Special Issue "Optofluidics 2015" that was published in Micromachines